A Contradiction in Moment of Inertia Formulae by reductio ad absurdum?

e2m2a
Messages
354
Reaction score
13
In physics the moment of inertia of a thin rod which rotates around an axis through its center of mass is :

I cen = 1/12 m L sq (1)

Where: m is the mass of the rod, L is the length of the rod.

The moment of inertia of a thin rod which rotates around an axis which is at one end of the rod is:

I end = 1/3 m L sq (2)

However, this seems to lead to a paradox as follows: Imagine a rod of length L which rotates around an axis through its center of mass. Imagine the rod is split into 2 equal half-lengths with each half-length equal to L/2.
Thus, each half-length rod is rotating around the axis at one end. The moment of inertia of each half-length is, by equation (2):

I half-length end = 1/3 m (1/2 L) sq (3)

or

I half_length end = 1/12 m L sq (4)

But this is the same as equation (1). How can this be? If you computed the total moment of inertia of both half-lengths, it would equal:

I half-length end * 2 = 1/6 m L sq (5)

Which would leads to the impossible situation of (5) being greater than (1). Hence, we would have two different derivations of the moment of inertia of the same rod that give two different answers.
 
Last edited:
Mathematics news on Phys.org
There is no paradox here...
The procedure is right but, the only thing is when u split the rod into 2 halves, u must take the mass of each part as "m/2" and not "m".
 
Rancho said:
There is no paradox here...
The procedure is right but, the only thing is when u split the rod into 2 halves, u must take the mass of each part as "m/2" and not "m".


You're right. Thanks for pointing out the error.
 
anytime..when I'm ol :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
15
Views
2K
Replies
28
Views
1K
Replies
4
Views
1K
Replies
2
Views
631
Replies
5
Views
3K
Replies
4
Views
11K
Replies
1
Views
2K
Back
Top