A integral consists of sin(n+1/2) n=1,2,3

  • Thread starter Thread starter xhole
  • Start date Start date
  • Tags Tags
    Integral
xhole
Messages
1
Reaction score
0

Homework Statement



Hi all, i encounter this integral while i am trying to find the Fourier series of f(x)=ln(2*sin(x/2))


pi sin[(n+1/2)x] sin[(n-1/2)x]
∫ ------------- + ------------- dx n=1,2,3...
0 sin[(1/2)x] sin[(1/2)x]


Homework Equations



sin(A+B)=sinAcosB+sinBcosA
sin(2A)=2sinAcosA

The Attempt at a Solution



the answer seems to be 2*pi, but i still don't know how to work it out..
 
Physics news on Phys.org
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top