A matrix is diagonalizable when algebraic and geometric multiplicities are equal

  • Thread starter Thread starter jack_bauer
  • Start date Start date
  • Tags Tags
    Geometric Matrix
jack_bauer
Messages
10
Reaction score
0
A matrix is diagonalizable when algebraic and geometric multiplicities are equal.
My professor proved this in class today, but I did not fully understand his explanation and proof. Can someone please help?
 
Physics news on Phys.org
I thought I had answered this before. The "algebraic multiplicity" is the number of eigenvalues, counting "multiplicity". If follows that, including complex eigenvalues, since every polynomial can be factored into linear factors over the complex numbers, that the "algebraic multiplicity" of an n by n matrix is n. The "geometric multiplicity" is the number of independent eigenvalues. Thus, if the algebraic multiplicity is the same as the geometric multiplicity, the geometric multiplicity is also n and there exist n independent eigenvectors. But the "underlying" vector space of an n by n matrix has dimension n so those eigenvectors form a basis for that vector space. Writing the linear transformation this matrix represents in that vector space gives a diagonal matrix.
 
Jack, find the eigenvalues and eigenvectors of A by hand(!)

A = \begin{pmatrix}2 &1 &0\\0 &2 &0\\0 &0 &2\end{pmatrix}
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top