Susanne217
- 311
- 0
A never ending integral?(last post hopefully the solution 
I am trying to solve the integral
\frac{1}{2\pi} \int_{0}^{\pi} e^{-inx} \cdot cos(x) dx
but it freaking never ends :(
This should have been to be solve by integration by parts but I can never get the v in
uv - \int v du to get small enough to end the integral
I take the orignal integral
\frac{1}{2\pi} \int_{0}^{\pi} e^{-inx} \cdot cos(x) dx
let u = cos(x) and du = -sin(x) dx
then v = \frac{i \cdot e^{-inx}}{n} since dv = e^{-inx} dx
thus \frac{1}{2\pi} \int_{0}^{\pi} e^{-inx} \cdot cos(x) dx = \frac{-sin(n\pi)}{n}+ (\frac{-cos(n\pi)}{n} - \frac{1}{n}) \cdot i - \int_{0}^{\pi} \frac{i \cdot e^{-inx}}{n} \cdot -sin(x) dx
If I do integration by parts a second time I get
u = -sin(x), du = -cos(x) dx and dv = \frac{i \cdot e^{-inx}}{n} and thus v = \frac{i \cdot e^{-inx}}{n^2}
Which gives me
-sin(x) \cdot \frac{i \cdot e^{-inx}}{n^2}|_{0}^{\pi} - \int_{0}_{\pi} \frac{i \cdot e^{-inx}}{n^2} \cdot -cos(x) dx
and I then end up with an expression which looks like this
I = \frac{1}{2\pi} \int_{0}^{\pi} e^{-inx} \cdot cos(x) dx = \frac{-sin(n\pi)}{n}+ (\frac{-cos(n\pi)}{n} - \frac{1}{n}) \cdot i - \int_{0}^{\pi} \frac{i \cdot e^{-inx}}{n^2} \cdot -cos(x) dx
Dick, by solving it you mean
I = \frac{1}{2\pi} \int_{0}^{\pi} e^{-inx} \cdot cos(x) dx + \int_{0}^{\pi} \frac{i \cdot e^{-inx}}{n^2} \cdot cos(x) dx = \frac{-sin(n\pi)}{n}+ (\frac{-cos(n\pi)}{n} - \frac{1}{n}) \cdot i?
Sincerely
Susanne.

Homework Statement
I am trying to solve the integral
\frac{1}{2\pi} \int_{0}^{\pi} e^{-inx} \cdot cos(x) dx
but it freaking never ends :(
Homework Equations
This should have been to be solve by integration by parts but I can never get the v in
uv - \int v du to get small enough to end the integral
The Attempt at a Solution
I take the orignal integral
\frac{1}{2\pi} \int_{0}^{\pi} e^{-inx} \cdot cos(x) dx
let u = cos(x) and du = -sin(x) dx
then v = \frac{i \cdot e^{-inx}}{n} since dv = e^{-inx} dx
thus \frac{1}{2\pi} \int_{0}^{\pi} e^{-inx} \cdot cos(x) dx = \frac{-sin(n\pi)}{n}+ (\frac{-cos(n\pi)}{n} - \frac{1}{n}) \cdot i - \int_{0}^{\pi} \frac{i \cdot e^{-inx}}{n} \cdot -sin(x) dx
If I do integration by parts a second time I get
u = -sin(x), du = -cos(x) dx and dv = \frac{i \cdot e^{-inx}}{n} and thus v = \frac{i \cdot e^{-inx}}{n^2}
Which gives me
-sin(x) \cdot \frac{i \cdot e^{-inx}}{n^2}|_{0}^{\pi} - \int_{0}_{\pi} \frac{i \cdot e^{-inx}}{n^2} \cdot -cos(x) dx
and I then end up with an expression which looks like this
I = \frac{1}{2\pi} \int_{0}^{\pi} e^{-inx} \cdot cos(x) dx = \frac{-sin(n\pi)}{n}+ (\frac{-cos(n\pi)}{n} - \frac{1}{n}) \cdot i - \int_{0}^{\pi} \frac{i \cdot e^{-inx}}{n^2} \cdot -cos(x) dx
Dick, by solving it you mean
I = \frac{1}{2\pi} \int_{0}^{\pi} e^{-inx} \cdot cos(x) dx + \int_{0}^{\pi} \frac{i \cdot e^{-inx}}{n^2} \cdot cos(x) dx = \frac{-sin(n\pi)}{n}+ (\frac{-cos(n\pi)}{n} - \frac{1}{n}) \cdot i?
Sincerely
Susanne.
Last edited: