A non-intersecting family of circles

  • Thread starter Thread starter rajeshmarndi
  • Start date Start date
  • Tags Tags
    Circles
AI Thread Summary
The discussion centers on proving that a family of circles derived from two non-intersecting circles does not intersect. The circles S1 and S2 are defined with specific centers and radii, and their family is expressed as a linear combination involving a parameter k. Participants discuss methods to analyze the centers and radii as functions of k, emphasizing the importance of their alignment along the x-axis. A suggestion is made to investigate the conditions for intersection by examining the arrangement of the circles relative to the x-axis. The conversation highlights the mathematical approach needed to demonstrate the non-intersecting nature of the circles.
rajeshmarndi
Messages
319
Reaction score
0
Member warned that homework must be posted in one of the Homework sections
Mentor note: Moved from a technical math section.
What is the proof that the family of circles out of two non-intersecting circles, no two circles in that family intersect.

Say S1 = x^2 + y^2 - 8x + 7 = 0 (i.e center at (4,0) and radius = 3 )
S2 = x^2 + y^2 - 24x + 135 = 0 ( i.e center at (12,0) and radius = 3 )
Family of circles of the two above circles is S1 + k S2 = 0.
i.e x^2 + y^2 + [2* (-4 -12k)/(1+k)] x + [ (7 + 135k ) / (1+k) ] = 0 , k ∈ R

Thanks.
 
Last edited by a moderator:
Physics news on Phys.org
Did you try to find x,y that satisfy the conditions for both circles? Or did you calculate the centers and radii of the circles as function of k?
 
mfb said:
Did you try to find x,y that satisfy the conditions for both circles? Or did you calculate the centers and radii of the circles as function of k?
For circles along x-axis.

S1 = x^2 + y^2 + 2g1x + c1 = 0
S2 = x^2 + y^2 + 2g2x + c2 = 0

Family of circle of the above two circle. Center and radii as function of k.
center = ( - ((g1+kg2)/(1+k)) , 0 ) and radius = √ ( [(g1+kg2)/(1+k)]^2 - [(c1+kc2)/(1+k)] )

From my example, it is.

Center = ( -[{-4(1+3k)}/(1+k)] , 0) and radius = √ ( [{-4(1+3k)}/(1+k)]^2 - [(7+135k)/(1+k)] )

How do I proove from here?
 
rajeshmarndi said:
How do I proove from here?
It is your homework problem. How would you check if these circles have a common point?

One possible approach: It helps that all their centers are aligned. What do you know about the intersections with the x-axis for the circles? How must their arrangement be like if the circles intersect?
 
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Since ##px^9+q## is the factor, then ##x^9=\frac{-q}{p}## will be one of the roots. Let ##f(x)=27x^{18}+bx^9+70##, then: $$27\left(\frac{-q}{p}\right)^2+b\left(\frac{-q}{p}\right)+70=0$$ $$b=27 \frac{q}{p}+70 \frac{p}{q}$$ $$b=\frac{27q^2+70p^2}{pq}$$ From this expression, it looks like there is no greatest value of ##b## because increasing the value of ##p## and ##q## will also increase the value of ##b##. How to find the greatest value of ##b##? Thanks
Back
Top