A particle with spin 1/2 in a potential well

kisdrA
Messages
4
Reaction score
0
Hello everyone. Help me solve the problem. I don't understand how to handle this type of task.

Find the energy levels of a spin 1/2 particle in a potential well: V(r)+W(r)*(l,s), where V(r<a)=-U, V(r>a)=0, W(r) = q*δ(r-a)
 
Physics news on Phys.org
Moderator's note: Thread moved to advanced physics homework help.

@kisdrA you will need to post any relevant equations and show your attempt at a solution.
 
1734856353093.png
 
It is clear that the problem in the potential ##V(r)+W(r)*(l,s)##, but without the (l,s) term: ##V(r)+W(r)##, simply reduces to solving the radial Schrodinger equation. And I understand how to find energy levels in such a task. But what to do when ls interaction also appears in the delta layer?
 
A vector product can be written like this.
##(\overrightarrow{l}, \overrightarrow{s}) = \frac{1}{2} (\overrightarrow{j}^2 - \overrightarrow{l}^2 - \overrightarrow{s}^2)##
Then maybe just transform the stitching condition?
##\Psi^{'}_{II}(a+0) -\Psi^{'}_{I}(a-0) = \frac{2m}{\hbar^{2}}*q*\frac{1}{2}(j(j+1)-l(l+1)-s(s+1)) \Psi_{I,II}(a\pm 0)##
 
kisdrA said:
@kisdrA posting text and equations in images is not allowed here. Please post text and equations directly; use the PF LaTeX feature for equations. There is a LaTeX Guide link at the bottom left of each post window.
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top