A problem based on Fubini's theorem

  • Thread starter Thread starter quasar987
  • Start date Start date
  • Tags Tags
    Theorem
quasar987
Science Advisor
Homework Helper
Gold Member
Messages
4,796
Reaction score
32
[SOLVED] A problem based on Fubini's theorem

Homework Statement



Let 1&lt;p&lt;+\infty and f:\mathbb{R}^2\rightarrow [0,<br /> +\infty[ a measurable function. Set

f_n=\inf \{f,n\}\mathbb{I}_{[-n,n]\times [-n,n]}

and

F_n(x)=\int_{-\infty}^{+\infty}f_n(x,y)dy

Show that

\left(\int_{-\infty}^{+\infty}F_n(x)^p dx\right)^{1/p}\leq\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty}f_n(x,y)^pdx \right)^{1/p}dy

The Attempt at a Solution



In a somewhat different language, we are asked to show that

||F_n||_p\leq \int_{-\infty}^{+\infty}||f_n||_pdy

Aside from this sad recasting of the problem, I have no lead!
 
Physics news on Phys.org
That last inequality looks like the triangle inequality, doesn't it?
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top