- 4,796
- 32
[SOLVED] A problem based on Fubini's theorem
Let 1<p<+\infty and f:\mathbb{R}^2\rightarrow [0,<br /> +\infty[ a measurable function. Set
f_n=\inf \{f,n\}\mathbb{I}_{[-n,n]\times [-n,n]}
and
F_n(x)=\int_{-\infty}^{+\infty}f_n(x,y)dy
Show that
\left(\int_{-\infty}^{+\infty}F_n(x)^p dx\right)^{1/p}\leq\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty}f_n(x,y)^pdx \right)^{1/p}dy
In a somewhat different language, we are asked to show that
||F_n||_p\leq \int_{-\infty}^{+\infty}||f_n||_pdy
Aside from this sad recasting of the problem, I have no lead!
Homework Statement
Let 1<p<+\infty and f:\mathbb{R}^2\rightarrow [0,<br /> +\infty[ a measurable function. Set
f_n=\inf \{f,n\}\mathbb{I}_{[-n,n]\times [-n,n]}
and
F_n(x)=\int_{-\infty}^{+\infty}f_n(x,y)dy
Show that
\left(\int_{-\infty}^{+\infty}F_n(x)^p dx\right)^{1/p}\leq\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty}f_n(x,y)^pdx \right)^{1/p}dy
The Attempt at a Solution
In a somewhat different language, we are asked to show that
||F_n||_p\leq \int_{-\infty}^{+\infty}||f_n||_pdy
Aside from this sad recasting of the problem, I have no lead!