E01
- 8
- 0
The problem is as stated:
Prove that $$F_1*F_2+F_2*F_3+...+F_{2n-1}*F_{2n}=F^2_{2n}$$
But earlier in my text I proved by induction that $$F_{2n}=F_1+F_2+...+F_{2n-1}$$. Do I need to use this earlier proof in my current proof. I tried adding $$F_{2n+1}F_{2n+2}$$ to the right and left hand side of the first equation and tried to find $$F_{2n+1}F_{2n+2}+F^2_{2n}=F^2_{2n+2}$$ but that doesn't seem to be going anywhere. (Why doesn't that seem to work in this case? Because I am multiplying two sums together?)
Am I wrong in assuming that I am supposed to prove this by induction?
Prove that $$F_1*F_2+F_2*F_3+...+F_{2n-1}*F_{2n}=F^2_{2n}$$
But earlier in my text I proved by induction that $$F_{2n}=F_1+F_2+...+F_{2n-1}$$. Do I need to use this earlier proof in my current proof. I tried adding $$F_{2n+1}F_{2n+2}$$ to the right and left hand side of the first equation and tried to find $$F_{2n+1}F_{2n+2}+F^2_{2n}=F^2_{2n+2}$$ but that doesn't seem to be going anywhere. (Why doesn't that seem to work in this case? Because I am multiplying two sums together?)
Am I wrong in assuming that I am supposed to prove this by induction?
Last edited: