A right circular cone is inscribed in a hemisphere.

pringless
Messages
43
Reaction score
0
A right circular cone is inscribed in a hemisphere. The figure is expanding in such a way that the combinded surface area of the hemisphere and its base is increasing at a constant rate of 18 in^2 per second. At what rate is the volume of the cone changing when the radius of the common base is 4 in?
 
Last edited by a moderator:
Mathematics news on Phys.org
Are you sure this shouldn't be under "homework help"? :smile:

I assume that the cone is inscribed in the hemisphere so that its base is the circular base of the hemispher.

If I remember correctly, the surface area of a sphere is 4 &pi r2 so the surface area of a hemisphere is 2 &pi r2 and the "combinded surface area of the hemisphere and its base" is A= 3 &pi r2. Knowing that dA= 18 square inches per second, you should be able to find the rate of change of r from that.

The volume of a right circular cone is given by V= (1/3) &pi r2h (I confess I looked that up). In this case, the height of the cone, as well as the radius of its base, is the radius of the hemisphere so V= (1/3) &pi r3. Since you have already calculated dr/dt, you can use that to find dV/dt.

(Why are the "& codes" that Greg Barnhardt noted not working for me?)
 
do they need to be (and are they) followed by semicolons?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top