A Student throws a ball straight up

  • Thread starter Thread starter Phoenixtears
  • Start date Start date
  • Tags Tags
    Ball Student
AI Thread Summary
A student throws a ball straight up with an initial speed of 15 m/s from a height of 2.0 m. To determine how long the ball is in the air, the acceleration due to gravity, -9.8 m/s², must be used. The problem can be solved in two parts: first calculating the time to reach maximum height and then the time to fall back to the ground. The total time in the air combines both ascent and descent times. Properly applying the equations of motion will yield the correct duration before the ball hits the ground.
Phoenixtears
Messages
82
Reaction score
0

Homework Statement



A student standing on the ground throws a ball straight up. The ball leaves the student's hand with a speed of 15 m/s when the hand is 2.0 m above the ground. How long is the ball in the air before it hits the ground? (The student moves her hand out of the way.)

Homework Equations



X= Vt + .5at^2

The Attempt at a Solution



I'm not sure why I can't get this right. At first I thought it impossible without the acceleration, but then I discovered that because the acceleration is merely the slope of the velocity graph, it would just equal '2/t', right? I have my X (delta x) as 2. (Would it be negative 2??) My initial velocity is 15 m/s (as stated) and my variable is t. I ended with this equation:

2= 15t + .5(2/t)t^2

Why can I not get the answer from this equation? I keep getting extremely low decimals.
 
Physics news on Phys.org
Usually in these sorts of questions, you can assume the student is on the surface of the earth, and thus you can use the acceleration due to gravity as the acceleration (ie. a = g = -9.8m/s^2)
 
If this problem is occurring on earth, then the acceleration is the acceleration due to gravity which to 2 s.f. is 9.8ms-2.

If you define upwards as positive then you must use -9.8 ms-2 since gravity is downwards. Also, the initial vertical position was +2m from the ground, while the final is 0m. Thus the final change in displacement (X) was -2 (since it went downwards from the start).

Try subbing these values in.

And also, the slope of the velocity graph is not 2/t. If you were to calculate the slope using the total time of flight (t), you would need the initial and final velocities. Then you slope would be rise / run = final - initial velocity / time. But even if you tried you would still end up using the actual value of g = 9.8 anyway.
 
Phoenixtears said:

Homework Statement



A student standing on the ground throws a ball straight up. The ball leaves the student's hand with a speed of 15 m/s when the hand is 2.0 m above the ground. How long is the ball in the air before it hits the ground? (The student moves her hand out of the way.)

Homework Equations



X= Vt + .5at^2

The Attempt at a Solution



I'm not sure why I can't get this right. At first I thought it impossible without the acceleration, but then I discovered that because the acceleration is merely the slope of the velocity graph, it would just equal '2/t', right? I have my X (delta x) as 2. (Would it be negative 2??) My initial velocity is 15 m/s (as stated) and my variable is t. I ended with this equation:

2= 15t + .5(2/t)t^2

Why can I not get the answer from this equation? I keep getting extremely low decimals.

Along with the other hint... Which way is 'x' pointing? Is this the same as 'v'? Simplify matters by having your hand (2m up from the ground) as your zero point.
 
Phoenixtears said:

Homework Statement



A student standing on the ground throws a ball straight up. The ball leaves the student's hand with a speed of 15 m/s when the hand is 2.0 m above the ground. How long is the ball in the air before it hits the ground? (The student moves her hand out of the way.)

Homework Equations



X= Vt + .5at^2

The Attempt at a Solution



I'm not sure why I can't get this right. At first I thought it impossible without the acceleration, but then I discovered that because the acceleration is merely the slope of the velocity graph, it would just equal '2/t', right? I have my X (delta x) as 2. (Would it be negative 2??) My initial velocity is 15 m/s (as stated) and my variable is t. I ended with this equation:

2= 15t + .5(2/t)t^2

Why can I not get the answer from this equation? I keep getting extremely low decimals.

A couple of suggestions are in order. First of all value for acceleration is Earth's gravitational acceleration constant g of 9.8 m/s2

Second of all you might consider solving the problem in 2 parts. First the time to max height which since Earth gravity is constant is merely t = Vo/ g - the constant.

Then with the time you can figure Xmax from the relationship x = 1/2 gt2

Then you can figure the return to the ground which is the max height from that plus the additional 2 meters. Putting the new x back in the same equation yields the return time. Answer = time to max + time to ground.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top