Abstract Algebra: Find Generators & Relations for Z2+Z2+Z2

tyrannosaurus
Messages
31
Reaction score
0

Homework Statement


What is the minimum number of generators needed for Z2+Z2+Z2? Find a set of generators and relations for this group.


Homework Equations





The Attempt at a Solution


I think it is obvious that the minimum amount of generators that you need is three, with Z2+Z2+Z2 = {a,b,c|a^2=b^2=c^2} but I don't know what I have to put down for the relations in the group and I am not sure how to explain that the minimum is 3 generators. Any help would be great!
 
Physics news on Phys.org
It's not 'obvious' that the minimal number of generators is three until you explain why you think it is. And I have no idea what Z2+Z2+Z2 = {a,b,c|a^2=b^2=c^2} is supposed to mean. Can you explain?
 
To show that you can't have two generators: what do you know about the order of elements in the group?

In terms of the relations, you definitely need more than just a^2=b^2=c^2=e since the group with that presentation is infinite. What about relations to make the group abelian?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top