Abstract Algebra: Solving Stumping Questions | αη = β and G is Abelian

m-chan
Messages
2
Reaction score
0
I have 2 algebra questions which are stumping me, I just can't seem to use my notes to figure them out!

1. Let α, β ∈ S17 where α = (17 2)(1 2 15 17 ), β = (2 3 16)(6 16 17 ).
Determine η, as a product of disjoint cycles, where αη = β.

2. Let G be a group in which a^2 = 1 for all a ∈ G. Prove that G is Abelian.
Hint: Consider (ab)^2.

HELP PLEASE :(
 
Physics news on Phys.org
For 2, consider what (ab)2 equals.
 
Right, I've figured out 2, thanks Mark44 and I've done some of 1, but I'm stuck at the end of the question.

I have η= (2 17)(17 15 2 1)(2 3 16)(6 16 17), but I'm not sure if that's right though. I also don't know where to go from there.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top