kathrynag
- 595
- 0
Homework Statement
Prove:
(A-B)\cup(B-A)=(A\cupB)-(A\capB)
Homework Equations
The Attempt at a Solution
We need to show (A-B)\cup(B-A)\subseteq(A\cupB)-(A\capB)
and (A\cupB)-(A\capB)\supseteq(A-B)\cup(B-A).
We begin by showing the first:
Let x\in(A-B)\cup(B-A).
By definition of union, x\inA-B or x\inB-A.
If x\inA-B, we know x\inA ...
This is where I've begun to get stuck. Not sure where to go next.