Nylex
- 552
- 2
I'm getting confused by this. I have a handout from a lecture that has a derivation that ends with
"\vec{a} = \vec{a'} + 2\vec{\omega} \times \vec{v'} + \vec{\omega} \times (\vec{\omega} \times \vec{r})
Multiplying through by mass, m
m\vec{a} = \vec{F_{ext}} = m\vec{a'} + 2m\vec{\omega} \times \vec{v'} + m\vec{\omega} \times (\vec{\omega} \times \vec{r})
We preserve Newton II in rotating frame by writing \vec{F'_{net}} = m\vec{a'} where \vec{F'_{net}} is the net force measured by observer in rotating frame.
ie. \vec{F'_{net}} = \vec{F_{ext}} - 2m(\vec{\omega} \times \vec{v'}) - m[\vec{\omega} \times (\vec{\omega} \times \vec{r})]"
It's really the last line that's confusing me. The expressions for the Coriolis and centrifugal forces are
\vec{F_{Cor}} = -2m(\vec{\omega} \times \vec{v'}) and \vec{F_{cent}} = -m\vec{\omega} \times (\vec{\omega} \times \vec{r}), so why isn't it
\vec{F'_{net}} - \vec{F_{Cor}} - \vec{F_{cent}} = \vec{F_{ext}}?
"\vec{a} = \vec{a'} + 2\vec{\omega} \times \vec{v'} + \vec{\omega} \times (\vec{\omega} \times \vec{r})
Multiplying through by mass, m
m\vec{a} = \vec{F_{ext}} = m\vec{a'} + 2m\vec{\omega} \times \vec{v'} + m\vec{\omega} \times (\vec{\omega} \times \vec{r})
We preserve Newton II in rotating frame by writing \vec{F'_{net}} = m\vec{a'} where \vec{F'_{net}} is the net force measured by observer in rotating frame.
ie. \vec{F'_{net}} = \vec{F_{ext}} - 2m(\vec{\omega} \times \vec{v'}) - m[\vec{\omega} \times (\vec{\omega} \times \vec{r})]"
It's really the last line that's confusing me. The expressions for the Coriolis and centrifugal forces are
\vec{F_{Cor}} = -2m(\vec{\omega} \times \vec{v'}) and \vec{F_{cent}} = -m\vec{\omega} \times (\vec{\omega} \times \vec{r}), so why isn't it
\vec{F'_{net}} - \vec{F_{Cor}} - \vec{F_{cent}} = \vec{F_{ext}}?