DoubleWs
- 1
- 0
1. Find 'y' in terms of 't' for the equation of the net force on a falling object ƩFy = mg-bv = ma
So I'm pretty sure I found the velocity in terms of time correctly, and I'm interested in having someone check my answer for 'y' in terms of time.
ƩFy = mg-bv = ma
a = \frac{dv}{dt}
b = a constant (drag coefficient)
mg - bv = ma
mg - bv = m\frac{dv}{dt}
g - \frac{bv}{m} = \frac{dv}{dt}
(g - \frac{bv}{m})dt = dv
∫dt = ∫\frac{dv}{g-(bv/m)}
g - \frac{bv}{m} = u
\frac{du}{dv} = \frac{-b}{m}
\frac{-m}{b}du = dv
∫dt = -\frac{m}{b}∫\frac{1}{u}du
t + C = \frac{-m}{b}ln(u)
t + C = \frac{-m}{b}ln(g - \frac{bv}{m})
\frac{-bt}{m} + C = ln(g - \frac{bv}{m})
e^{-bt/m} * C = g - \frac{bv}{m}
\frac{mg}{b} - C * e^{-bt/m} = v
\frac{mg}{b}(1 - e^{-bt/m}) = v
Ok, so there's 'v' in terms of 't'. Now...
\frac{mg}{b}(1 - e^{-bt/m}) = \frac{dy}{dt}
∫\frac{mg}{b}(1 - e^{-bt/m})dt = ∫dy
\frac{mg}{b}∫(1 - e^{-bt/m})dt = ∫dy
\frac{mg}{b}(t + \frac{m}{b}e^{-bt/m}) - C = y
\frac{mg}{b}(t + \frac{m}{b}e^{-bt/m}) - 1 = y
Just wondering if all of this is right, and if now, how can I fix it.
So I'm pretty sure I found the velocity in terms of time correctly, and I'm interested in having someone check my answer for 'y' in terms of time.
Homework Equations
ƩFy = mg-bv = ma
a = \frac{dv}{dt}
b = a constant (drag coefficient)
The Attempt at a Solution
mg - bv = ma
mg - bv = m\frac{dv}{dt}
g - \frac{bv}{m} = \frac{dv}{dt}
(g - \frac{bv}{m})dt = dv
∫dt = ∫\frac{dv}{g-(bv/m)}
g - \frac{bv}{m} = u
\frac{du}{dv} = \frac{-b}{m}
\frac{-m}{b}du = dv
∫dt = -\frac{m}{b}∫\frac{1}{u}du
t + C = \frac{-m}{b}ln(u)
t + C = \frac{-m}{b}ln(g - \frac{bv}{m})
\frac{-bt}{m} + C = ln(g - \frac{bv}{m})
e^{-bt/m} * C = g - \frac{bv}{m}
\frac{mg}{b} - C * e^{-bt/m} = v
\frac{mg}{b}(1 - e^{-bt/m}) = v
Ok, so there's 'v' in terms of 't'. Now...
\frac{mg}{b}(1 - e^{-bt/m}) = \frac{dy}{dt}
∫\frac{mg}{b}(1 - e^{-bt/m})dt = ∫dy
\frac{mg}{b}∫(1 - e^{-bt/m})dt = ∫dy
\frac{mg}{b}(t + \frac{m}{b}e^{-bt/m}) - C = y
\frac{mg}{b}(t + \frac{m}{b}e^{-bt/m}) - 1 = y
Just wondering if all of this is right, and if now, how can I fix it.
Last edited: