Analyzing 3 Electron States in Different Orbital Levels

barefeet
Messages
58
Reaction score
2

Homework Statement


Consider three electrons in three different orbital levels n, m and p. We
assume that there is one electron in each orbital level. How many states
are then possible?

Homework Equations


Equations for constructing symmetric and asymmetric wavefunctions:

Symmetric under pair permutation:
$$ \frac{1}{\sqrt{6}} \{\left |nmp\right \rangle + \left |mpn\right \rangle + \left |pnm\right \rangle +\left |npm\right \rangle + \left |pmn\right \rangle + \left |mnp\right \rangle \} $$Anti-symmetric under pair permutation:
$$ \frac{1}{\sqrt{6}}\{\left |nmp\right \rangle + \left |mpn\right \rangle + \left |pnm\right \rangle - \left |npm\right \rangle - \left |pmn\right \rangle - \left |mnp\right \rangle \} $$

Symmetric under cyclic permutation:

$$ \frac{1}{\sqrt{3}} \{ \left |nmp\right \rangle + \varepsilon \left |mpn\right \rangle + \varepsilon^* \left |pnm\right \rangle \}$$
$$ \frac{1}{\sqrt{3}} \{ \left |npm\right \rangle + \varepsilon \left |pmn\right \rangle + \varepsilon^* \left |mnp\right \rangle \}$$

With:

$$ \varepsilon = e^{i\frac{2 \pi}{3}} $$
$$ \varepsilon^* = \varepsilon^2 $$

Anti-symmetric under cyclic permutation:

$$ \frac{1}{\sqrt{3}} \{ \left |npm\right \rangle + \varepsilon^* \left |pmn\right \rangle + \varepsilon \left |mnp\right \rangle \} \}$$
$$ \frac{1}{\sqrt{3}} \{ \left |nmp\right \rangle + \varepsilon^* \left |mpn\right \rangle + \varepsilon \left |pnm\right \rangle \}$$

The Attempt at a Solution


I could get the symmetric spin part of the wave function and use that with the anti-symmetric orbital part:
$$ \left | \uparrow \uparrow \uparrow \right \rangle $$
$$ \frac{1}{\sqrt{3}} \{ \left | \downarrow \uparrow \uparrow \right \rangle + \left | \uparrow \downarrow \uparrow \right \rangle + \left | \uparrow \uparrow \downarrow \right \rangle \}$$
$$ \frac{1}{\sqrt{3}} \{ \left | \uparrow \downarrow \downarrow \right \rangle + \left | \downarrow \uparrow \downarrow \right \rangle + \left | \downarrow \downarrow \uparrow \right \rangle \}$$
$$ \left | \downarrow \downarrow \downarrow \right \rangle $$There should be 8 states, but this only gives me 4. I don't know how to get the asymmetric spin part.
 
Physics news on Phys.org
According to classical mechanics the electrons are distinguishable.

But quantum mechanically you can't distinguish the electron and can't say i-th electron is in j-th state.What can you do? You can just distinguish the angular momentum component along the z direction of the electron system.And so the solution above given is right.As the electron is spin half particle so the given four solutions represents just the 3/2,1/2,-1/2,-3/2 angular momentum states
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top