AA1983
- 5
- 0
In the Anderson model, it cost an energy Un_{\Uparrow}n_{\Downarrow} for a quantum dot level to be occupied by two electrons. Here n_{\Uparrow} is the second quantized number operator, counting the number of particles with spin \Uparrow. I need the term Un_{\Uparrow}n_{\Downarrow} in first quantization. Here is what I know:
Un_{\Uparrow}n_{\Downarrow} =<br /> Ud_{\Uparrow}^{\dagger}d_{\Uparrow}d_{\Downarrow}^{\dagger}d_{\Downarrow}<br /> =<br /> -Ud_{\Uparrow}^{\dagger}d_{\Downarrow}^{\dagger}d_{\Uparrow}d_{\Downarrow}<br /> =<br /> \frac{1}{2}\sum_{\eta_{1}\eta_{2}\eta_{3}\eta_{4}}V_{\eta_{1}\eta_{2}\eta_{3}\eta_{4}}d_{\eta_{1}}^{\dagger}d_{\eta_{2}}^{\dagger}d_{\eta_{3}}d_{\eta_{4}}<br />
where
<br /> V_{\eta_{1}\eta_{2}\eta_{3}\eta_{4}}=\Big\{<br /> \begin{array}{c}<br /> -2U \qquad \text{for} \qquad \eta_{1}=\eta_{2}=\Uparrow,\: \eta_{2}=\eta_{4}=\Downarrow\\<br /> 0 \qquad \text{elsewhere}<br /> \end{array}.
V is also given by
<br /> V_{\eta_{1}\eta_{2}\eta_{3}\eta_{4}}=\int dx_{j} dx_{k} \psi_{\eta_{1}}^{\ast}(x_{j})\psi_{\eta_{2}}^{\ast}(x_{k})V(x_{j}-x_{k})<br /> \psi_{\eta_{3}}(x_{j})\psi_{\eta_{4}}(x_{k})
Now, what is V(x_{j}-x_{k}) ?
Un_{\Uparrow}n_{\Downarrow} =<br /> Ud_{\Uparrow}^{\dagger}d_{\Uparrow}d_{\Downarrow}^{\dagger}d_{\Downarrow}<br /> =<br /> -Ud_{\Uparrow}^{\dagger}d_{\Downarrow}^{\dagger}d_{\Uparrow}d_{\Downarrow}<br /> =<br /> \frac{1}{2}\sum_{\eta_{1}\eta_{2}\eta_{3}\eta_{4}}V_{\eta_{1}\eta_{2}\eta_{3}\eta_{4}}d_{\eta_{1}}^{\dagger}d_{\eta_{2}}^{\dagger}d_{\eta_{3}}d_{\eta_{4}}<br />
where
<br /> V_{\eta_{1}\eta_{2}\eta_{3}\eta_{4}}=\Big\{<br /> \begin{array}{c}<br /> -2U \qquad \text{for} \qquad \eta_{1}=\eta_{2}=\Uparrow,\: \eta_{2}=\eta_{4}=\Downarrow\\<br /> 0 \qquad \text{elsewhere}<br /> \end{array}.
V is also given by
<br /> V_{\eta_{1}\eta_{2}\eta_{3}\eta_{4}}=\int dx_{j} dx_{k} \psi_{\eta_{1}}^{\ast}(x_{j})\psi_{\eta_{2}}^{\ast}(x_{k})V(x_{j}-x_{k})<br /> \psi_{\eta_{3}}(x_{j})\psi_{\eta_{4}}(x_{k})
Now, what is V(x_{j}-x_{k}) ?