PFStudent
- 169
- 0
Homework Statement
How do I find,
<br /> sin\left(\alpha - \beta + \gamma\right) = ?<br />
Homework Equations
<br /> sin\left(\alpha\pm\beta\right) = sin\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\beta \pm cos\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\beta<br />
and
<br /> cos\left(\alpha\pm\beta\right) = cos\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\beta \mp sin\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\beta<br />
The Attempt at a Solution
<br /> sin\left(\alpha - \beta + \gamma\right) = ?<br />
I know how to do it for four distinct angles,
<br /> sin\left(\alpha + \beta + \gamma + \psi\right) = ?<br />
Where, let
<br /> \alpha + \beta = \theta<br />
<br /> \gamma + \psi = \phi<br />
And then expand, using the earlier identity I mentioned,
<br /> sin\left(\theta + \phi\right) = sin\theta{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\phi + cos\theta{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\phi<br />
<br /> sin\left(\theta + \phi\right) = sin(\alpha + \beta){\textcolor[rgb]{1.00,1.00,1.00}{.}}cos(\gamma + \psi) + cos(\alpha + \beta){\textcolor[rgb]{1.00,1.00,1.00}{.}}sin(\gamma + \psi)<br />
<br /> sin\left(\theta + \phi\right) = [sin\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\beta + cos\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\beta]{\textcolor[rgb]{1.00,1.00,1.00}{.}}[cos\gamma{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\psi - sin\gamma{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\psi] + [cos\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\beta - sin\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\beta]{\textcolor[rgb]{1.00,1.00,1.00}{.}}[sin\gamma{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\psi + cos\gamma{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\psi]<br />
<br /> sin\left((\alpha + \beta) + (\gamma + \psi)\right) = [sin\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\beta + cos\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\beta]{\textcolor[rgb]{1.00,1.00,1.00}{.}}[cos\gamma{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\psi - sin\gamma{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\psi] + [cos\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\beta - sin\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\beta]{\textcolor[rgb]{1.00,1.00,1.00}{.}}[sin\gamma{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\psi + cos\gamma{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\psi]<br />
<br /> sin\left(\alpha + \beta + \gamma + \psi\right) = [sin\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\beta + cos\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\beta]{\textcolor[rgb]{1.00,1.00,1.00}{.}}[cos\gamma{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\psi - sin\gamma{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\psi] + [cos\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\beta - sin\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\beta]{\textcolor[rgb]{1.00,1.00,1.00}{.}}[sin\gamma{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\psi + cos\gamma{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\psi]<br />
However, for three angles, is where I am stumped.
Any help is appreciated.
Thanks,
-PFStudent
Last edited: