Angle Addition Formula for three angles?

AI Thread Summary
The discussion revolves around finding the sine of the expression sin(α - β + γ) using angle addition formulas. Participants clarify that the sine function can be expanded using the identities for two angles, and they explore the associative property of addition to determine if the order of angle grouping affects the result. It is emphasized that regardless of how the angles are grouped, the sine function remains consistent due to this property. The conversation also addresses a previous mistake in expanding a four-angle sine expression, leading to corrections and further understanding. Overall, the thread highlights the importance of correctly applying trigonometric identities and the associative property in angle addition.
PFStudent
Messages
169
Reaction score
0

Homework Statement



How do I find,

<br /> sin\left(\alpha - \beta + \gamma\right) = ?<br />

Homework Equations



<br /> sin\left(\alpha\pm\beta\right) = sin\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\beta \pm cos\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\beta<br />

and

<br /> cos\left(\alpha\pm\beta\right) = cos\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\beta \mp sin\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\beta<br />

The Attempt at a Solution



<br /> sin\left(\alpha - \beta + \gamma\right) = ?<br />

I know how to do it for four distinct angles,

<br /> sin\left(\alpha + \beta + \gamma + \psi\right) = ?<br />

Where, let

<br /> \alpha + \beta = \theta<br />

<br /> \gamma + \psi = \phi<br />

And then expand, using the earlier identity I mentioned,

<br /> sin\left(\theta + \phi\right) = sin\theta{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\phi + cos\theta{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\phi<br />

<br /> sin\left(\theta + \phi\right) = sin(\alpha + \beta){\textcolor[rgb]{1.00,1.00,1.00}{.}}cos(\gamma + \psi) + cos(\alpha + \beta){\textcolor[rgb]{1.00,1.00,1.00}{.}}sin(\gamma + \psi)<br />

<br /> sin\left(\theta + \phi\right) = [sin\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\beta + cos\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\beta]{\textcolor[rgb]{1.00,1.00,1.00}{.}}[cos\gamma{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\psi - sin\gamma{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\psi] + [cos\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\beta - sin\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\beta]{\textcolor[rgb]{1.00,1.00,1.00}{.}}[sin\gamma{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\psi + cos\gamma{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\psi]<br />

<br /> sin\left((\alpha + \beta) + (\gamma + \psi)\right) = [sin\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\beta + cos\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\beta]{\textcolor[rgb]{1.00,1.00,1.00}{.}}[cos\gamma{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\psi - sin\gamma{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\psi] + [cos\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\beta - sin\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\beta]{\textcolor[rgb]{1.00,1.00,1.00}{.}}[sin\gamma{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\psi + cos\gamma{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\psi]<br />

<br /> sin\left(\alpha + \beta + \gamma + \psi\right) = [sin\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\beta + cos\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\beta]{\textcolor[rgb]{1.00,1.00,1.00}{.}}[cos\gamma{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\psi - sin\gamma{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\psi] + [cos\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\beta - sin\alpha{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\beta]{\textcolor[rgb]{1.00,1.00,1.00}{.}}[sin\gamma{\textcolor[rgb]{1.00,1.00,1.00}{.}}cos\psi + cos\gamma{\textcolor[rgb]{1.00,1.00,1.00}{.}}sin\psi]<br />

However, for three angles, is where I am stumped.

Any help is appreciated.

Thanks,

-PFStudent
 
Last edited:
Physics news on Phys.org
If you can do four, why can't you do three?

Let

<br /> \alpha + \beta = \theta<br />

<br /> \gamma = \gamma<br />
 
Hey,

Thanks for the quicky reply Doc Al, I hesitated to do that because was not sure if the folowing was true,

<br /> sin\left(\alpha + \beta + \gamma\right) = sin\left((\alpha + \beta) + \gamma\right) = sin\left(\alpha + (\beta + \gamma)\right)<br />

The reason I ask is if any quantity (in the parentheses) can be let equal theta and expanded will they all be equal?

That is where I was unsure. That if you took each scenario I mentioned,

<br /> sin\left((\alpha + \beta) + \gamma\right)<br />

<br /> sin\left(\alpha + (\beta + \gamma)\right)<br />

And let the quantity in parentheses equal theta and applied the angle addition formula, would they still all be equal?

Or does it matter which pair of angles you let equal theta (i.e. does the answer change if you pick two different pairs)?

Thanks,

-PFStudent
 
Unfortunately, you also did the four angle one wrong. First expand sin\left(\theta + \phi\right) and then put the definitions of theta and phi in and keep expanding. Each term should have trig functions of four angles in it. You expanded sin\left(\theta \right)+ sin\left(\phi\right).
 
Last edited:
PFStudent said:
That is where I was unsure. That if you took each scenario I mentioned,

<br /> sin\left((\alpha + \beta) + \gamma\right)<br />

<br /> sin\left(\alpha + (\beta + \gamma)\right)<br />

And let the quantity in parentheses equal theta and applied the angle addition formula, would they still all be equal?
They better be! (That's the associative property of addition.)

Or does it matter which pair of angles you let equal theta (i.e. does the answer change if you pick two different pairs)?
Try it and see! :wink:

Dick said:
Unfortunately, you also did the four angle one wrong.
Thanks for checking, Dick. (I obviously didn't.)
 
Last edited:
Hey,

Thanks for the help guys, I edited my original post to reflect the correct expansion for angle addition of four angles.

Thanks,

-PFStudent
 
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Since ##px^9+q## is the factor, then ##x^9=\frac{-q}{p}## will be one of the roots. Let ##f(x)=27x^{18}+bx^9+70##, then: $$27\left(\frac{-q}{p}\right)^2+b\left(\frac{-q}{p}\right)+70=0$$ $$b=27 \frac{q}{p}+70 \frac{p}{q}$$ $$b=\frac{27q^2+70p^2}{pq}$$ From this expression, it looks like there is no greatest value of ##b## because increasing the value of ##p## and ##q## will also increase the value of ##b##. How to find the greatest value of ##b##? Thanks
Back
Top