As an update, I tried calculating the point of intersection between the line ##\overline{AB}## and the ellipse, and it turns out that it is more complicated than I thought. Here is my attempt:
Letting the semi-major axis of the ellipse be ##a## and the semi-minor axis be ##b##, the equation of the ellipse is
\begin{equation*}
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,
\end{equation*}
while the equation of the line intersecting the ellipse is
\begin{equation*}
y - y_0 = m\left(x - x_0\right) + y_\text{intercept}.
\end{equation*}
To find the point of intersection between the line and the ellipse, I will insert the equation of the line in the equation of the ellipse. So,
\begin{eqnarray*}
y &=& m\left(x - x_0\right) + y_\text{intercept} + y_0 \\
\Rightarrow \frac{x^2}{a^2} + \frac{\left[m\left(x - x_0\right) + y_\text{intercept} + y_0\right]^2}{b^2} &=& 1 \\
\Rightarrow \left[m\left(x - x_0\right) + y_\text{intercept} + y_0\right]^2 &=& m^2 \left(x - x_0\right)^2 \\
&+& 2 m y_\text{intercept} \left(x - x_0\right) + 2 m y_0 \left(x - x_0\right) \\
&+& y_\text{intercept}^2 + 2 y_\text{intercept} y_0 + y_0^2 \\
&=& m^2\left(x^2 - 2xx_0 + x_0^2\right) + 2mxy_\text{intercept} - 2mx_0y_\text{intercept} \\
&+& 2mxy_0 - 2mx_0y_0 + y_\text{intercept}^2 + 2y_\text{intercept}y_0 + y_0^2 \\
&=& m^2 x^2 - 2m^2xx_0 + m^2x_0^2 + 2mxy_\text{intercept} - 2mx_0y_\text{intercept} \\
&+& 2mxy_0 - 2mx_0y_0 + y_\text{intercept}^2 + 2y_\text{intercept}y_0 + y_0^2.
\end{eqnarray*}
Using the previous equation, the equation of the ellipse becomes
\begin{eqnarray*}
\frac{x^2}{a^2} + \frac{m^2 x^2 - 2m^2xx_0 + m^2x_0^2 + \cdots}{b^2} &=& 1.
\end{eqnarray*}
And then joining terms with ##x^2## and ##x## to form a polynomial function of order 2;
\begin{eqnarray*}
\left(\frac{1}{a^2} + \frac{m^2}{b^2}\right)x^2 + \left(\frac{-2m^2x_0 + 2my_\text{intercept} + 2my_0}{b^2} \right)x + \left(\frac{m^2x_0^2 - 2mx_0y_\text{intercept} - 2mx_0y_0 + y_\text{intercept}^2 + 2y_\text{intercept}y_0 + y_0^2}{b^2} - 1\right) = 0.
\end{eqnarray*}
This is similar to the form of the polynomial ##ax^2 + bx + c = 0##, which can be solved using the quadratic formula. Letting
\begin{eqnarray*}
a &=& \frac{1}{a^2} + \frac{m^2}{b^2}, \\
&=& \frac{b^2 + a^2 m^2}{a^2 b^2}, \\
b &=& \frac{-2m^2x_0 + 2my_\text{intercept} + 2my_0}{b^2}, \\
c &=& \frac{m^2x_0^2 - 2mx_0y_\text{intercept} - 2mx_0y_0 + y_\text{intercept}^2 + 2y_\text{intercept}y_0 + y_0^2}{b^2} - 1, \\
&=& \frac{m^2x_0^2 - 2mx_0y_\text{intercept} - 2mx_0y_0 + y_\text{intercept}^2 + 2y_\text{intercept}y_0 + y_0^2 - b^2}{b^2}.
\end{eqnarray*}
I plan to divide the solution to the quadratic equation into several parts for an easier reading of my attempt. The division of the quadratic equation will be ##-b##, ##b^2##, ##4ac##, and ##2a##.
\begin{eqnarray*}
-b &=& \frac{2mx_0 - 2my_\text{intercept} - 2my_0}{b^2}, \\
b^2 &=& \frac{\left(2m^2x_0 - 2my_\text{intercept} - 2my_0\right)^2}{b^4}, \\
&=& \frac{4 m^4 x_0^2 - 8 m^3 x_0 y_\text{intercept} - 8 m^3 x_0 y_0 + 4 m^2 y_\text{intercept}^2 + 8 m^2 y_\text{intercept} y_0 + 4 m^2 y_0^2}{b^4}, \\
4ac &=& 4 \left(\frac{b^2 + a^2 m^2}{a^2 b^2}\right) \left(\frac{m^2x_0^2 - 2mx_0y_\text{intercept} - 2mx_0y_0 + y_\text{intercept}^2 + 2y_\text{intercept}y_0 + y_0^2}{b^2} - 1\right), \\
&=& \frac{4 b^2 m^2 x_0^2 - 8 b^2 m x_0 y_\text{intercept} - 8 b^2 m x_0 y_0 + 4 b^2 y_\text{intercept}^2 + 8 b^2 y_\text{intercept} y_0 + 4 b^2 y_0^2 - 4 b^4 + 4 a^2 m^4 x_0^2 - 8 a^2 m^3 x_0 y_\text{intercept} - 8 a^2 m^3 x_0 y_0 + 4 a^2 m^2 y_\text{intercept}^2 + 8 a^2 m^2 y_\text{intercept} y_0 + 4 a^2 m^2 y_0^2 - 4 a^2 b^2 m^2}{a^2 b^4}, \\
2a &=& \frac{2 b^2 + 2 a^2 m^2}{a^2 b^2}.
\end{eqnarray*}
The next part will be ##b^2 - 4ac##;
\begin{eqnarray*}
b^2 - 4ac &=& \frac{4 m^4 x_0^2 - 8 m^3 x_0 y_\text{intercept} - 8 m^3 x_0 y_0 + 4 m^2 y_\text{intercept}^2 + 8 m^2 y_\text{intercept} y_0 + 4 m^2 y_0^2}{b^4} - \frac{4 b^2 m^2 x_0^2 - 8 b^2 m x_0 y_\text{intercept} - 8 b^2 m x_0 y_0 + 4 b^2 y_\text{intercept}^2 + 8 b^2 y_\text{intercept} y_0 + 4 b^2 y_0^2 - 4 b^4 + 4 a^2 m^4 x_0^2 - 8 a^2 m^3 x_0 y_\text{intercept} - 8 a^2 m^3 x_0 y_0 + 4 a^2 m^2 y_\text{intercept}^2 + 8 a^2 m^2 y_\text{intercept} y_0 + 4 a^2 m^2 y_0^2 - 4 a^2 b^2 m^2}{a^2 b^4} \\
&=& \left(\frac{4 a^2 m^4 x_0^2 - 8 a^2 m^3 x_0 y_\text{intercept} - 8 a^2 m^3 x_0 y_0 + 4 a^2 m^2 y_\text{intercept}^2 + 8 a^2 m^2 y_\text{intercept} y_0 + 4 a^2 m^2 y_0^2 - 4 b^2 m^2 x_0^2 + 8 b^2 m x_0 y_\text{intercept} + 8 b^2 m x_0 y_0 - 4 b^2 y_\text{intercept}^2 - 8 b^2 y_\text{intercept} y_0 - 4 b^2 y_0^2 + 4 b^4 - 4 a^2 m^4 x_0^2 + 8 a^2 m^3 x_0 y_\text{intercept} + 8 a^2 m^3 x_0 y_0 - 4 a^2 m^2 y_\text{intercept}^2 - 8 a^2 m^2 y_\text{intercept} y_0 - 4 a^2 m^2 y_0^2 + 4 a^2 b^2 m^2}{a^2 b^4}\right) \\
&=& \left(\frac{-4 b^2 m^2 x_0^2 + 8 b^2 m x_0 y_\text{intercept} + 8 b^2 m x_0 y_0 - 4 b^2 y_\text{intercept}^2 - 8 b^2 y_\text{intercept} y_0 - 4 b^2 y_0^2 + 4 b^4 + 4 a^2 b^2 m^2}{a^2 b^4}\right) \\
&=& \frac{-4b^2\left(m^2 x_0^2 - 2mx_0y_0 + y_0^2 - 2mx_0y_\text{intercept} + y_\text{intercept}^2 + 2y_\text{intercept}y_0 - b^2 - a^2m^2\right)}{b^4}.
\end{eqnarray*}
This is where I get stuck... I do not know how to simplify the equation further.