Angle between line and the axis

  • Context: MHB 
  • Thread starter Thread starter karthikS
  • Start date Start date
  • Tags Tags
    Angle Axis Line
Click For Summary
SUMMARY

The discussion revolves around calculating the true angle of a 3D line with the z-axis using angles from the X-Z and Y-Z planes. The formula provided for this calculation is angle Z = arccos(sqrt(1 - sin(angle Y-Z)^2 - sin(angle X-Z)^2)). The user encountered discrepancies when applying the formula, particularly with a space diagonal in a cube, where both angles Ø1 and Ø2 were expected to be 45 degrees, but the formula yielded 90 degrees instead. This indicates a potential misunderstanding or misapplication of the formula in specific geometric contexts.

PREREQUISITES
  • Understanding of 3D geometry and angles
  • Familiarity with trigonometric functions, specifically sine and cosine
  • Knowledge of vector projection in three-dimensional space
  • Basic concepts of right-angled triangles and their properties
NEXT STEPS
  • Review vector projection techniques in 3D geometry
  • Study the properties of angles in right-angled triangles
  • Explore the implications of using trigonometric identities in geometric calculations
  • Investigate common pitfalls in applying trigonometric formulas to 3D problems
USEFUL FOR

Mathematicians, physics students, and engineers who are working with 3D geometry and need to calculate angles between lines and axes accurately.

karthikS
Messages
3
Reaction score
0
Consider a 3D straight line passing through z-axis. Following two angles are given (available):

(1) Angle of the line with the z-axis in X-Z plane
(2) Angle of the line with the z-axis in Y-Z plane

I want to know the true angle of the line with the z-axis, i.e.,the angle of the line with z-axis in the plane passing through the line and z-axis.View attachment 7971
 

Attachments

  • cuboid1.png
    cuboid1.png
    9.8 KB · Views: 144
Last edited:
Physics news on Phys.org
karthikS said:
Consider a 3D straight line passing through z-axis. Following two angles are given (available):

(1) Angle of the line with the z-axis in X-Z plane
(2) Angle of the line with the z-axis in Y-Z plane

I want to know the true angle of the line with the z-axis, i.e.,the angle of the line with z-axis in the plane passing through the line and z-axis.

Hi karthikS, welcome to MHB!

Can it be that you mean the angle of the line with the X-Z plane?
Respectively the angle with the Y-Z plane?
Because we can take an angle of a line either with respect to another line, or with respect to a plane.

If so, then let $\angle X\text-Z$ and $\angle Y\text-Z$ be those angles.
And let $\angle Z$ be the angle with the z-axis.

Then:
$$\angle Z = \arccos \sqrt{1-\sin(\angle Y\text-Z)^2-\sin(\angle X\text-Z)^2} \tag 1$$

This follows from the vector project formula, and how angles of lines and planes are defined.
That is, let $\mathbf{\hat a}$ be a direction vector along the line with length 1.
And let $\mathbf{\hat x}$, $\mathbf{\hat y}$, and $\mathbf{\hat z}$ be the standard coordinate vectors (of length 1).
Then:
\begin{cases}
\sin\angle Y\text-Z = \mathbf{\hat a}\cdot \mathbf{\hat x} = a_x \\
\sin\angle X\text-Z = \mathbf{\hat a}\cdot \mathbf{\hat y} = a_y \\
\cos\angle Z = \mathbf{\hat a}\cdot \mathbf{\hat z} = a_z \\
\sqrt{a_x^2+a_y^2+a_z^2} = 1 \tag 2
\end{cases}
From (2) we can find (1).

Since I do not know how familiar you are with these kind of manipulations, please let us know if any step is unclear.
 
Last edited:
I like Serena said:
Hi karthikS, welcome to MHB!

Can it be that you mean the angle of the line with the X-Z plane?
Respectively the angle with the Y-Z plane?
Because we can take an angle of a line either with respect to another line, or with respect to a plane.

If so, then let $\angle X\text-Z$ and $\angle Y\text-Z$ be those angles.
And let $\angle Z$ be the angle with the z-axis.

Then:
$$\angle Z = \arccos \sqrt{1-\arcsin(\angle Y\text-Z)^2-\arcsin(\angle X\text-Z)^2} \tag 1$$

This follows from the vector project formula, and how angles of lines and planes are defined.
That is, let $\mathbf{\hat a}$ be a direction vector along the line with length 1.
And let $\mathbf{\hat x}$, $\mathbf{\hat y}$, and $\mathbf{\hat z}$ be the standard coordinate vectors (of length 1).
Then:
\begin{cases}
\sin\angle Y\text-Z = \mathbf{\hat a}\cdot \mathbf{\hat x} = a_x \\
\sin\angle X\text-Z = \mathbf{\hat a}\cdot \mathbf{\hat y} = a_y \\
\cos\angle Z = \mathbf{\hat a}\cdot \mathbf{\hat z} = a_z \\
\sqrt{a_x^2+a_y^2+a_z^2} = 1 \tag 2
\end{cases}
From (2) we can find (1).

Since I do not know how familiar you are with these kind of manipulations, please let us know if any step is unclear.

Have you meant 'arcsin' inside the square root, or it is simply 'sin'?
 
karthikS said:
Have you meant 'arcsin' inside the square root, or it is simply 'sin'?

Yes. Sorry. I meant sine.
Fixed in my previous post.
 
I like Serena said:
Yes. Sorry. I meant sine.
Fixed in my previous post.

Can you confirm that you have meant the angle marked with a '?' in the diagram as angle Z?View attachment 7981

'h' is the space diagonal in the cube shown above. When the space diagonal is projected onto the XZ plane, projected line is at an angle Ø1 with the Z-axis. Similarly, when the space diagonal is projected onto the YZ plane, projected line is at angle Ø2 with the Z-axis.

Now, look at the right angled triangle formed by the sides 'a', 'd' and 'h'. What is the the true angle of the space diagonal with the Z-axis in the plane of the right angled triangle?

When I use the above formula, I am not getting correct results. In a cube, when the space diagonal is projected on to the two planes, I have the 45 degrees on both Ø1 and Ø2. With the formula, I am getting 90 degrees, which is not true.
View attachment 7982View attachment 7983
 

Attachments

  • cube_45.PNG
    cube_45.PNG
    2.3 KB · Views: 121
  • download.png
    download.png
    2.6 KB · Views: 127
  • WNt8J.png
    WNt8J.png
    2.6 KB · Views: 127

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K