Angular Acceleration: Clarifying What αz is?

AI Thread Summary
Angular acceleration, denoted as αz, refers to the angular acceleration about the z-axis. It is clarified that αz is calculated using the formula a/R, where "a" represents linear acceleration and "R" is the radius. The discussion highlights that the equation shows the relationship between linear and angular accelerations, specifically that the linear acceleration a corresponds to ay when the radius R cancels out. The confusion around the equation was resolved, confirming that dividing linear acceleration by the radius yields angular acceleration. The participants expressed gratitude for the clarification provided.
oliampian
Messages
6
Reaction score
0

Homework Statement


upload_2016-5-3_23-2-18.png

upload_2016-5-3_23-14-9.png

upload_2016-5-3_23-3-9.png


This is not really a question on how to solve the problem, I'm just trying to get clarification on something. For angular acceleration, α, can someone explain to me what αz is? And why does αz = α / R = αy? I understand the rest of the problem, I just don't understand where or what αz is and how αz = α / R = αy. Thanks in advance for any help given!
 
Physics news on Phys.org
oliampian said:
For angular acceleration, α, can someone explain to me what αz is?
##\alpha_z## apparently represents the angular acceleration for rotation about the z-axis.
And why does αz = α / R = αy?
The print in the picture is small and hard to read. In equation (2) I think it states that ## \alpha_z = \large \frac{a}{R}##, not ##\alpha_z = \large \frac{\alpha}{R}.##
 
TSny said:
##\alpha_z## apparently represents the angular acceleration for rotation about the z-axis.

The print in the picture is small and hard to read. In equation (2) I think it states that ## \alpha_z = \large \frac{a}{R}##, not ##\alpha_z = \large \frac{\alpha}{R}.##

Ohhh, you're right about the a/R not α/R. But can you explain to me why does a/R = ay?
 
oliampian said:
Ohhh, you're right about the a/R not α/R. But can you explain to me why does a/R = ay?
They aren't claiming that a/R = ay.

The R cancels: (1/2)MR(a/R) = (1/2)May. The "a" on the left is the same as ay.
 
TSny said:
They aren't claiming that a/R = ay.

The R cancels: (1/2)MR(a/R) = (1/2)May. The "a" on the left is the same as ay.

Ok I see. And just to clarify, if I divide a linear acceleration by the radius R then we get angular acceleration?

Nvm! Figured it out. Thank yoooou! :)
 
Last edited:
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top