Ben4000
- 5
- 0
Homework Statement
Using the fact that ,\left\langle \hat{L}_{x}^{2} \right\rangle = \left\langle \hat{L}_{y}^{2} \right\rangle show that \left\langle \hat{L}_{x}^{2} \right\rangle = 1/2 \hbar^{2}(l(l+1)-m^{2}.
The Attempt at a Solution
L^{2} \left|l,m\right\rangle = \hbar^{2}l(l+1) \left|l,m\right\rangle
L_{z} \left|l,m\right\rangle = \hbar m \left|l,m\right\rangle
\left\langle \hat{L}^{2} \right\rangle = \hbar^{2}l(l+1)
\left\langle \hat{L}_{z}^{2} \right\rangle = (\hbar m)^{2}\left\langle \hat{L}^{2} \right\rangle = \left\langle \hat{L}_{x}^{2} \right\rangle + \left\langle \hat{L}_{y}^{2} \right\rangle + \left\langle \hat{L}_{z}^{2} \right\rangle
\left\langle \hat{L}_{x}^{2} \right\rangle = 1/2 (\left\langle \hat{L}^{2} \right\rangle - \left\langle \hat{L}_{z}^{2} \right\rangle )
I don't think that this is really showing the solution since i have just stated that
\left\langle \hat{L}^{2} \right\rangle = \left\langle \hat{L}_{x}^{2} \right\rangle + \left\langle \hat{L}_{y}^{2} \right\rangle + \left\langle \hat{L}_{z}^{2} \right\rangle
and
\left\langle \hat{L}_{z}^{2} \right\rangle = (\hbar m)^{2}. Unless it is genrally true that \left\langle \hat{L}^{2} \right\rangle = \left\langle \hat{L} \right\rangle^{2
What do you think?
Last edited: