Angular momentum of rotating hoop

AI Thread Summary
The discussion addresses the calculation of angular momentum for a rotating hoop, highlighting a problem with the initial setup due to a lack of clarity on the reference point for the calculation. The user presents their own calculation, noting that they initially misused the angular velocity vector and neglected the z-axis rotation. They arrive at a corrected angular momentum value of MR^2 Ω (3/2 k - 2 j), which differs from the official solution by a specific term. The discrepancy is attributed to the choice of origin, which is offset from that used in the official solution. The conversation emphasizes the importance of accurately defining the point of reference in angular momentum calculations.
BroPro
Messages
2
Reaction score
0
Homework Statement
Hi! See attached below a question from Kleppner's Intro to Mechanics. I calculated the angular momentum using ##\mathbf L=M \mathbf R \times \mathbf V + \mathbf L_{cm}##, where ##\mathbf L_{cm}## is the angular momentum about the center of mass, but I got a different answer than the official solution.
I think both answers are correct: I calculated the angular momentum about the origin showed in the diagram, while (I think) the official solution implicitly calculated the angular momentum about the point of contact between the axle and the z axis. Is this correct? Yet it's strange for me that the angular momentum on the y axis cancels out: is this a mistake on my part, or really what happens? Why does it cancel out?
Relevant Equations
##\mathbf L=M \mathbf R \times \mathbf V + \mathbf L_{cm}##
Problem:
2023-12-02 12_31_10-Physics 1 - An Introduction to Mechanics Kleppner, Kolenkow 2nd Edition.pd...png

Official solution:
2023-12-02 12_49_25-Physics 1 - An Introduction to Mechanics Kleppner, Kolenkow 2nd Edition So...png

My calculation:
\begin{align*}
\mathbf L &= M \mathbf R \times \mathbf V + \mathbf L_{cm} \\
&= M R (\hat j + \hat k) \times (- \Omega R \hat i) + MR^2 \Omega \hat j \\
&= MR^2 \Omega (\hat k - \hat j + \hat j) \\
&= MR^2 \Omega \hat k
\end{align*}
 
Physics news on Phys.org
The problem is ill posed since it fails to specify with respect to which point the angular momentum should be computed and the center of mass is not stationary.
 
I've realized the answer on my own, posting it here.
I've been blindly using the ##\mathbf \omega _s## vector of the official solution, but I've realized it should point in the opposite direction to negative y. Also, in my calculation of ##\mathbf L_{cm}## I've neglected the z axis rotation of the hoop, giving the correct angular momentum of
$$\mathbf L = MR^2 \Omega (\frac{3}{2}\hat k - 2 \hat j)$$
This value is off by ##-MR^2 \Omega \hat j## from the official answer of (with correction of the sign) ##\mathbf L = MR^2 \Omega (\frac{3}{2}\hat k - \hat j)##, which makes sense because my origin is off by $R$ from the origin used in the offical solution.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top