Angular Velocity Problem - Merry Go Round

AI Thread Summary
A 4.8m diameter merry-go-round with an initial angular velocity of 0.8 rad/s and a moment of inertia of 1950 kg·m² experiences a change when four individuals, each weighing 65 kg, jump on. The moment of inertia increases due to the added mass of the individuals, affecting the angular velocity. The conservation of angular momentum principle is key to solving the problem, as it states that the initial angular momentum must equal the final angular momentum. Participants discuss how to calculate the new angular velocity by determining the change in moment of inertia. Understanding these relationships is crucial for finding the solution to the problem.
vm310
Messages
13
Reaction score
0
A 4.8m diameter merry-go-round is rotating freely with an angular velocity of 0.8rad/s. Its total moment of inertia is 1950(kg)(m2). Skid, Mitch, Larry, and Greezy all jump on at the same time. They each have a mass of 65kg.What is the angular velocity now?



Relevant equations
\omega=\frac{v}{r}

I=\frac{1}{2}mv2

The Attempt at a Solution


I'm totally lost. Someone please give me a hint :-p

Thanks
 
Physics news on Phys.org
vm310 said:
I=\frac{1}{2}mv2

This is not actually correct. 1/2 mv^2 is the formula for kinetic energy. The moment of inertia of a rotating body is something totally different, and it depends on both the mass of the body and its shape. But you don't have to worry about how to calculate it, because the problem *gives* you its numerical value right from the start.
vm310 said:
I'm totally lost. Someone please give me a hint :-p

There is a relationship between moment of inertia, angular velocity, and angular momentum. If you look at it closely, it should become clear what to do.

EDIT: Hint 1 - One of these three quantities changes after the kids jump on, as compared to before, which results in a change in another one of the quantities.

Hint 2 - As is often the case in physics, a general conservation law is what allows us to understand how the system will respond after the change has occurred.
 
Thank you for the quick response. I know that,

L=I\omega

and that,

L=mvr

I know I'm supposed to sum the masses of everyone who jumps on, but am I suppose to sum the radius also?
 
vm310 said:
Thank you for the quick response. I know that,

L=I\omega

Right, and the quantity that changes (before vs. after) is the moment of inertia of the merry go round, because now it has the additional individual moments of inertia of the people standing on it. If you can figure out by how much I changes, you can figure out how much omega changes (because angular momentum is conserved).
 
Thanks cepheid I got it!
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top