Cutter Ketch said:
Sounds like you need to write a business plan!
Nice thought; I never thought much along these lines before, being enamoured more of submarine tents for storing gravitational energy, because they could scale up to national or international proportions, not just megawatthour orders of magnitude, but this one does have potential I suppose.
The idea is immature as yet and there could be many variations on the scheme.
Lead is good because it is modestly dense and comparatively cheap nowadays because its market has slumped rather, ever since its (justifiable) omission from high octane fuels, though depleted Uranium would have nearly twice the density. However, I suspect that even depleted U238 would be more expensive than lead.
If one did cast the lead as a slug (or an assembly of smaller slugs, which might be cheaper and more manageable and maintainable) one might sheath it with copper or something similar that could be machined more precisely, and coat it with a low-friction, wear-resistant gasketing such as ultra-high-molecular-weight polyethylene. With such a surface on the inside of the cylinder shaft, or perhaps in the form of piston rings,the seal could be really good. If for some reason we decided that a one-piece piston really would be desirable, then lead particles in a matrix of say, polyester might have advantages, with the shaft still lined with UHMWPE for friction.
Instead of putting any mechanisms inside the slug, let alone attaching it to dangerous, expensive ropes etc both the raising and power offtake could be performed by pumps and turbines both for raising it by pumping fluid below the slug for energy accumulation, and extracting the potential energy by letting the fluid out under pressure for driving the turbines.
An attraction of floating the lead in the shaft is that one could greatly improve the storage and cost of withdrawing the power by returning the power offtake fluid to on top of the free-floating piston instead of to a retention vessel. There would be many advantages to a closed system of that type; it might offer opportunities for using say, kerosene or nitrogen (though I doubt the properties of gases, but hmmmm... liquid SO2...) instead of water in cold regions, or to tune the working properties such as viscosity and corrosiveness.
But there are many aspects to investigate; for example how much of the shaft to have underground and how much in a tower. The working pressure for a given mass would be affected by many factors, such as the diameter of the shaft and slug.
It is a tricky subject, but attractive, I think. Haven't there been any industrial investigations of the type, does anyone know?