MHB Another Great Problem in Trigonometry

  • Thread starter Thread starter DrunkenOldFool
  • Start date Start date
  • Tags Tags
    Trigonometry
Click For Summary
The problem involves finding the value of λ given the equations involving cosines of angles α, β, and γ. It is established that if cos α + cos β + cos γ = 0, then cos 3α + cos 3β + cos 3γ can be expressed as 4 times the sum of the cubes of the cosines. Using the identity for the sum of cubes when the angles sum to zero, it simplifies to 12 times the product of the cosines. Consequently, the value of λ is determined to be 12. This conclusion highlights a specific relationship in trigonometric identities.
DrunkenOldFool
Messages
20
Reaction score
0
If $\cos \alpha +\cos \beta + \cos \gamma=0$ and $\cos 3 \alpha +\cos 3\beta +\cos 3\gamma = \lambda \cos \alpha \cos \beta \cos \gamma$. What is the value of $\lambda$?
 
Mathematics news on Phys.org
DrunkenOldFool said:
If $\cos \alpha +\cos \beta + \cos \gamma=0$ and $\cos 3 \alpha +\cos 3\beta +\cos 3\gamma = \lambda \cos \alpha \cos \beta \cos \gamma$. What is the value of $\lambda$?

\[\begin{align*}\cos 3 \alpha +\cos 3\beta +\cos 3\gamma &= (4\cos^3 \alpha -3\cos \alpha)+(4\cos^3 \beta -3\cos \beta)+(4\cos^3 \gamma -3\cos \gamma) \\ &= 4(\cos^3 \alpha +\cos^3 \beta +\cos^3 \gamma)-3(\underbrace{\cos \alpha +\cos \beta + \cos \gamma}_{=0}) \\ &= 4(\cos^3 \alpha +\cos^3 \beta +\cos^3 \gamma)\end{align*}\]

Note that when $a+b+c=0$, $a^3+b^3+c^3=3abc$.

\[\begin{align*}\cos 3 \alpha +\cos 3\beta +\cos 3\gamma &= 4(3\cos \alpha \cos \beta \cos \gamma) \\ &= 12\cos \alpha \cos \beta \cos \gamma\end{align*}\]

Therefore $\lambda =12$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
1K
Replies
46
Views
4K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K