Another Linear Algebra proof about linear transformations

brushman
Messages
112
Reaction score
1

Homework Statement


Given:
T is a linear transformation from V -> W and the dim(V) = n and dim(W) = m

Prove:
If β = {v1, ..., vm} is a basis of V, then { T(v1), ..., T(vm) } spans the image of T.
NOTE: because of bad hand writing I can't tell if the bold is suppose to be an 'm' or an 'n'. I think 'm' because that makes more sense to me.

The Attempt at a Solution



Let A = { T(v1), ..., T(vm) } .

We must show that the vectors in A are L.I., and that the dim(A) is m.

If we show the vectors of A are L.I. then since there are m vectors we know the dimension is m.

Then there must be only the trivial solution to c1T(v1) + ... + cmT(vm) = 0 .
Or, by linearity, T(c1v1 + ... + cmvm) = 0 .

Note: I don't think I can jump straight to the next step. (in a similar thread of mine I did so by utilizing the fact that the null space is 0).

Since the vectors v1...vm form a basis, they are L.I. and only the trivial solution exists.

Therefore span(A) = Im(T).
 
Physics news on Phys.org
brushman said:

Homework Statement


Given:
T is a linear transformation from V -> W and the dim(V) = n and dim(W) = m

Prove:
If β = {v1, ..., vm} is a basis of V, then { T(v1), ..., T(vm) } spans the image of T.
NOTE: because of bad hand writing I can't tell if the bold is suppose to be an 'm' or an 'n'. I think 'm' because that makes more sense to me.
But it doesn't make sense to me. It's given that dim(V) = n, so any basis for V must have n vectors. So β = {v1, ..., vn}.

From this, the set of image vectors must be { T(v1), ..., T(vn) }
brushman said:

The Attempt at a Solution



Let A = { T(v1), ..., T(vm) } .

We must show that the vectors in A are L.I., and that the dim(A) is m.

If we show the vectors of A are L.I. then since there are m vectors we know the dimension is m.

Then there must be only the trivial solution to c1T(v1) + ... + cmT(vm) = 0 .
Or, by linearity, T(c1v1 + ... + cmvm) = 0 .

Note: I don't think I can jump straight to the next step. (in a similar thread of mine I did so by utilizing the fact that the null space is 0).

Since the vectors v1...vm form a basis, they are L.I. and only the trivial solution exists.

Therefore span(A) = Im(T).
 
brushman said:

Homework Statement


Given:
T is a linear transformation from V -> W and the dim(V) = n and dim(W) = m

Prove:
If β = {v1, ..., vm} is a basis of V, then { T(v1), ..., T(vm) } spans the image of T.
NOTE: because of bad hand writing I can't tell if the bold is suppose to be an 'm' or an 'n'. I think 'm' because that makes more sense to me.

The Attempt at a Solution



Let A = { T(v1), ..., T(vm) } .

We must show that the vectors in A are L.I., and that the dim(A) is m.
The problem isn't asking you to show that A is a basis for W. It's asking you to show A spans Im(T). The vectors in A may not, in fact, be independent.
 
Thanks Mark and vela. How does this look:Let A = { T(v1), ..., T(vm) } and β = {v1, ..., vn}.

Since β is a basis of V, all vectors in V can be written as v = c1v1 + ... + cnvn.

Then T(v) = T(c1v1 + ... + cnvn) = c1 T(v1) + ... + cn T(vn).

Because the Im(T) = T(v), and T(v) can be written as a linear combination of the elements of A, A spans Im(T).
 
That's the basic idea. I'd probably slightly reorder it: start the proof with "Let w\in \mathrm{Im}(T)" and show that this implies that w can be written as a linear combination of the vectors in A.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top