Another partial differential equation problem

pentazoid
Messages
142
Reaction score
0

Homework Statement



Derived the general solution of the given equation by using an appropriate change of variables
5.) du/dt-2(du/dx)=2

Homework Equations



du/dx=du/d(alpha)*d(alpha)/dx+du/d(beta)*d(beta)/dx
du/dt= du/d(alpha)*d(alpha)/dt+du/d(beta)*d(beta)/dt

The Attempt at a Solution



not really sure how to determine du/d(alpha),d(alpha)/dx,d(beta)/dx ,d(alpha)/dt,d(beta)/dt

book says alpha=x+2t, beta=x
 
Physics news on Phys.org
pentazoid said:

Homework Statement



Derived the general solution of the given equation by using an appropriate change of variables
5.) du/dt-2(du/dx)=2

Homework Equations



du/dx=du/d(alpha)*d(alpha)/dx+du/d(beta)*d(beta)/dx
du/dt= du/d(alpha)*d(alpha)/dt+du/d(beta)*d(beta)/dt

The Attempt at a Solution



not really sure how to determine du/d(alpha),d(alpha)/dx,d(beta)/dx ,d(alpha)/dt,d(beta)/dt

book says alpha=x+2t, beta=x
<br /> \frac{\partial\alpha}{\partial x}=1,\frac{\partial\beta}{\partial x}=1 so<br /> \[<br /> \frac{\partial u}{\partial x}=\frac{\partial u}{\partial\alpha}\frac{\partial\alpha}{\partial x}+\frac{\partial u}{\partial\beta}\frac{\partial\beta}<br /> {\partial x}=\frac{\partialu}{\partialx}=\frac{\partial u}{\partial\alpha}+\frac{\partial u}{\partial\beta}<br /> \]<br />
did that help?
 
the1ceman said:
<br /> \frac{\partial\alpha}{\partial x}=1,\frac{\partial\beta}{\partial x}=1 so<br /> \[<br /> \frac{\partial u}{\partial x}=\frac{\partial u}{\partial\alpha}\frac{\partial\alpha}{\partial x}+\frac{\partial u}{\partial\beta}\frac{\partial\beta}<br /> {\partial x}=\frac{\partialu}{\partialx}=\frac{\partial u}{\partial\alpha}+\frac{\partial u}{\partial\beta}<br /> \]<br />
did that help?

I probably should have said in the back of the book, they give you alpha and beta. They don't give you the equations for alpha and beta in the problem. I don't understand how to determine alpha and beta.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top