Another polar / rectangular simplification

  • Thread starter Thread starter Sparky_
  • Start date Start date
  • Tags Tags
    Polar Rectangular
Sparky_
Messages
227
Reaction score
5

Homework Statement



Convert into rectangular coordinates:

<br /> r = \frac {1}{1-cos(theta)}<br />



Homework Equations





The Attempt at a Solution



<br /> r = \frac {1}{1-cos(theta)}<br />


<br /> r –r(cos) = 1<br />
(why can't I get a minus sign to display correctly? - I'm trying to show r - r*cos = 1)

I used
<br /> r = \sqrt {x^2+y^2}<br />
and

<br /> cos = \frac {x}{r}<br /> <br /> x = (r)(cos)<br />

resulting combinations gives:
<br /> \sqrt {x^2+y^2} – x = 1<br />
(I think) - and again - I'm having a problem (maybe just on my end) displaying a minus sign. I'm seeing "8211" on the screen for the minus sign.

I'm trying to display sqrt(x^2+y^2) - x = 1.

The book gets

<br /> y^2} = 1 + 2x<br />

I‘ve tried some various algebra stuff but am not getting close to the book’s answer.

Thanks
-Sparky
 
Last edited:
Physics news on Phys.org
Never mind, I got it - I don't know how to delete the post (if I'm allowed)

I moved x over and squared both sides.

<br /> \sqrt {x^2+y^2} = 1 + x<br />

<br /> {\sqrt {x^2+y^2}}^2 = (1 + x)^2<br />

<br /> {x^2+y^2} = 1 + 2x + x^2<br />

<br /> y^2} = 1 + 2x<br />
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top