Another question about implicit differentiation.

jaydnul
Messages
558
Reaction score
15
Say you have x^2+y^2=100. why can't you just solve for y, so y=+- √(100-x^2) then use the chain rule to find the derivative. so y'= +- x/√(100-x^2). Then you can just deduce that y'= -x/y. What is the point of adding all the dy/dx in the equation? Seems like it just complicates it.
 
Physics news on Phys.org
The point of implicit differentiation is that it avoids having to find x in terms of y before taking the derivative. In the example function you have chosen, y can be found in terms of x easily. There are functions where such is not the case. Implicit differentiation is the only technique which can be used in those cases.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top