Another Question Regarding Power Series

DivGradCurl
Messages
364
Reaction score
0
I used Mathematica to confirm that

\sum _{n=0} ^{\infty} \left[ \frac{\left( -1 \right) ^n \left( 2n \right) x^{2n+1}}{n! \left( n+1 \right) ! 2^{2n+1}} \right] + \sum _{n=0} ^{\infty} \left[ \frac{\left( -1 \right) ^n \left( 2n \right) \left( 2n+1 \right) x^{2n+1}}{n! \left( n+1 \right) ! 2^{2n+1}} \right] = - \sum _{n=0} ^{\infty} \frac{\left( -1 \right) ^n x^{2n+3}}{n! \left( n+1 \right) ! 2^{2n+1}}

Does anyone know how to obtain it directly?

Thank you.
 
Physics news on Phys.org
Sure, combine the series on the left and notice that when n=0, the coefficient vanishes to get:


\sum _{n=1} ^{\infty} \left[ \frac{\left( -1 \right) ^n \left( 2n \right) (2n+2) x^{2n+1}}{n! \left( n+1 \right) ! 2^{2n+1}} \right]

Factor the numerator slightly:

\sum _{n=1} ^{\infty} \left[ \frac{\left( -1 \right) ^n \left( n \right) (n+1)2^2 x^{2n+1}}{n! \left( n+1 \right) ! 2^{2n+1}} \right]

Do some light cancelling, write our power of x in a funny way and let's pull out a -1 for fun:

-\sum _{n=1} ^{\infty} \left[ \frac{\left( -1 \right) ^{n-1} x^{2(n-1)+3}}{(n-1)! \left( (n-1)+1 \right) ! 2^{2(n-1)+1}} \right]

You are now a change of index variable away from glory.
 
Last edited:
Thanks a lot! It makes sense now.
 

Similar threads

Replies
3
Views
3K
Replies
7
Views
2K
Replies
3
Views
1K
Replies
4
Views
1K
Replies
5
Views
2K
Replies
4
Views
1K
Replies
1
Views
1K
Back
Top