Another Separable Differential Equation

BarackObama
Messages
13
Reaction score
0

Homework Statement


dz/dt + e^(t+z) = 0


Homework Equations





The Attempt at a Solution


dz/dt = -e^te^z
integral(dz/e^z) = integral(-e^tdt)

let u = 1/e^z
dv = dz
du = -e^-zdz v= z

integral(udv)
= z/e^z + integral(ze^-zdz)
 
Physics news on Phys.org
Welcome to PF!

Good morning, Mr President! Welcome to PF! :smile:

(have an integral: ∫ and try using the X2 icon just above the Reply box :wink:)
BarackObama said:
integral(dz/e^z) = integral(-e^tdt)

So far so good …

Now just rewrite ∫ dz/ez as ∫ e-z dz = … ? :smile:
 
Good morning!

∫e^-zdz = ∫-e^tdt
-e^-z = -e^t + C
e^-z = e^t + C

Is there any way to bring the variables down?

Thanks!
 
Take ln of both sides, but keep in mind that the log of a sum doesn't simplify.
 
z = -ln(e^t + C)

... not exactly easy to verify
 
What's so hard about it? Note the -ln(e^t + C) = ln(1/(e^t + C))
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top