ehrenfest
- 2,001
- 1
Shankar page 155
Use the propagator equation for a free particle
U(t) = \exp\left(\frac{i}{\hbar}\left(\frac{\hbar^2t}{2m}\frac{d^2}{dx^2}\right)\right) = \sum_{n=0}^{\infty}\frac{1}{n!}\rleft(\frac{i\hbar t}{2m}\right)\frac{2^{2n}}{dx^{2n}}
The initial state of the wave packet is
\psi(x',0)= \frac{exp(-x^2/2)}{(\pi)^{1/4}}
Find psi(x,t).
Hint 1: Express the initial wave function as a power series:
\psi(x',0) = (\pi)^{-1/4} \sum_{n = 0}^{\infty}{\frac{(-1)^nx^{2n}}{n!(2)^n}}
Hint 2: Find the action of a few terms
1, \left( \frac{i\hbart}{2m}\right) \frac{d^2}{dx^2}, \frac{1}{2!}\left( \frac{i\hbar t}{2m} \frac{d^2}{dx^2}\right)^2
I am stuck on the second hint. How do you find the action when you do not have a Lagrangian?
Please do not solve the entire thing--just help me with this hint. Thanks.
Homework Statement
Use the propagator equation for a free particle
U(t) = \exp\left(\frac{i}{\hbar}\left(\frac{\hbar^2t}{2m}\frac{d^2}{dx^2}\right)\right) = \sum_{n=0}^{\infty}\frac{1}{n!}\rleft(\frac{i\hbar t}{2m}\right)\frac{2^{2n}}{dx^{2n}}
The initial state of the wave packet is
\psi(x',0)= \frac{exp(-x^2/2)}{(\pi)^{1/4}}
Find psi(x,t).
Homework Equations
Hint 1: Express the initial wave function as a power series:
\psi(x',0) = (\pi)^{-1/4} \sum_{n = 0}^{\infty}{\frac{(-1)^nx^{2n}}{n!(2)^n}}
Hint 2: Find the action of a few terms
1, \left( \frac{i\hbart}{2m}\right) \frac{d^2}{dx^2}, \frac{1}{2!}\left( \frac{i\hbar t}{2m} \frac{d^2}{dx^2}\right)^2
The Attempt at a Solution
I am stuck on the second hint. How do you find the action when you do not have a Lagrangian?
Please do not solve the entire thing--just help me with this hint. Thanks.
Last edited: