scoobmx
- 27
- 1
Does this operator (in 3D):
ε_{ijk}∇_k = \begin{pmatrix}<br /> 0 & \frac{\partial}{\partial z} & -\frac{\partial}{\partial y}\\<br /> -\frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial x}\\<br /> \frac{\partial}{\partial y} & -\frac{\partial}{\partial x} & 0<br /> \end{pmatrix}
have a formal name and a more compact symbolic representation?
ε_{ijk}∇_k = \begin{pmatrix}<br /> 0 & \frac{\partial}{\partial z} & -\frac{\partial}{\partial y}\\<br /> -\frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial x}\\<br /> \frac{\partial}{\partial y} & -\frac{\partial}{\partial x} & 0<br /> \end{pmatrix}
have a formal name and a more compact symbolic representation?
Last edited: