Applications of Newton's laws (friction related)

In summary, a child pushes a block of wood with a mass of 0.72 kg across a smooth table. The block starts from rest and after 2 seconds has a velocity of 1.6 m/s [forward]. The coefficient of friction is 0.64. Using the equations F=ma and Ffriction=uFn, the net force on the block is found to be 0.576 N, the force of friction is 4.52 N, and the applied force is 5.1 N. The net and frictional forces act in the same direction, but they are not opposing forces. It is important to distinguish between applied forces and the resultant (net) force when solving problems involving forces.
  • #1
CAT 2
44
1

Homework Statement


A child pushes a block of wood with a mass of 0.72 kg across a smooth table. The block starts from a position of rest and after 2 seconds its has a velocity of 1.6 m/s [forward]
The coefficient of friction is 0.64.
a) Find the net force acting on the block of wood.
b) Find the force of friction acting on the block of wood.
c) Find the force with which the child actually pushes on the block of wood.

Homework Equations


F = ma
F friction = u Fn

The Attempt at a Solution



a)
(I already calculated acceleration, it is 0.8m/s^2)

Using:
F = ma
F = (0.72kg) (0.8m/s^2)
F = 0.576N

This the net horizontal force exerted on the block of wood. b)
Then I figured that the frictional force is: (I figured that Fn = 7.06N)

F friction = u Fn
F friction = (0.64) (7.06N)
F friction = 4.52Nc) And so the applied force must be 4.52N + 0.58N = 5.1N

Correct? Thanks in advance!
 
Physics news on Phys.org
  • #2
CAT 2 said:
Correct?
Yes, assuming the child pushes horizontally!
 
  • #3
Thanks, I have a question about it though. Why is it that Applied force = 4.52N + 0.58N? Shouldn't the friction be minused from the net horizontal force? Don't they oppose each other as the child pushes the block? Could you draw me a free-body diagram that shows which way the forces go? Or did I just miss something in the equation that would've explained this? Please answer this as I need to understand why. Thanks.
 
  • #4
CAT 2 said:
Shouldn't the friction be minused from the net horizontal force?
No. Net force means the sum of the applied forces, using their appropriate signs.
ma = net force = push - friction
 
  • Like
Likes CAT 2
  • #5
OK, but, aren't you saying here that friction counts against the push to equal the net force, because you are minusing friction from the push? (net force = push - friction: this is what you are saying, right?) In the problem it is added.
 
  • #6
CAT 2 said:
OK, but, aren't you saying here that friction counts against the push to equal the net force, because you are minusing friction from the push? (net force = push - friction: this is what you are saying, right?) In the problem it is added.
No, the equation you used in post #1 is push = friction + net force, which is the same thing.
 
  • #7
Alright, I think I got the equation, it's just the same equation switched up. But why is net force and friction in the same direction, are they both working against the push then? I was taught there were 4 forces working in 4 different directions, how are there two working in the same direction here?
 
  • #8
CAT 2 said:
But why is net force and friction in the same direction, are they both working against the push then?
No. You need to distinguish between applied forces and resultant (net) force. Sum of applied = net.
Suppose one of the applied forces is F and acts in the same direction as the net force. We then have F+ sum of other applied forces = net.
If we move F across to the other side of the equation we get net - F = sum of other applied. This does not mean F is suddenly acting oppositely to the net force.

In short, mixing applied forces and net force on the same side of the initial equation can confuse. Always best to start with the form "ma = net = sum of applied" and work from there.
 
  • #9
Ok, I think I got this now, thanks for all your help haruspex!
 

1. What is friction and how does it relate to Newton's laws?

Friction is the force that opposes motion between two surfaces in contact. It is related to Newton's laws in that it is a result of the interaction between two objects and the force applied by one object on the other.

2. How does friction affect an object's motion?

Friction can either increase or decrease an object's motion, depending on the direction and magnitude of the force applied. It can slow down an object's motion or prevent it from sliding altogether.

3. Can friction be beneficial in certain situations?

Yes, friction can be beneficial in many situations. For example, it allows us to walk and drive without slipping, and it helps cars stop when brakes are applied. It also allows us to grip and hold onto objects.

4. How does friction impact the efficiency of machines?

Friction can decrease the efficiency of machines by causing energy to be lost as heat. This is why lubricants are often used in machines to reduce friction and increase efficiency.

5. How can friction be calculated and controlled in practical applications?

Friction can be calculated using the coefficient of friction, which is a measure of the force needed to overcome friction. To control friction, various methods can be used such as using lubricants, changing the surface texture, or applying a force in the opposite direction to reduce friction.

Similar threads

  • Introductory Physics Homework Help
Replies
13
Views
968
  • Introductory Physics Homework Help
Replies
9
Views
2K
  • Introductory Physics Homework Help
Replies
17
Views
615
  • Introductory Physics Homework Help
Replies
2
Views
659
  • Introductory Physics Homework Help
Replies
4
Views
1K
  • Introductory Physics Homework Help
Replies
16
Views
1K
  • Introductory Physics Homework Help
Replies
15
Views
2K
  • Introductory Physics Homework Help
Replies
7
Views
351
  • Introductory Physics Homework Help
Replies
8
Views
1K
  • Introductory Physics Homework Help
Replies
6
Views
4K
Back
Top