Good responses, thank you. Okay, so the ship achieves a relative speed to the rest frame of v after one jump and v_n after n jumps. Working through the addition of relativistic speeds formula, the relation works out to
[(1 - v/c) / (1 + v/c)]^n = 2 / (1 + v_n/c) - 1
[(1 - v/c) / (1 + v/c)]^n = (1 - v_n/c) / (1 + v_n/c)
ln[(1 + v/c) / (1 - v/c)] n = ln[(1 + v_n/c) / (1 - v_n/c)]
ln[(1 + v/c) / (1 - v/c)] = ln[(1 + v_n/c) / (1 - v_n/c)] / n
This quantity, depending only upon the final speed and the number of jumps, remains constant since ln[(1 + v/c) / (1 - v/c)] on the left side of the equation is constant, and if we multiply the left side by m c / 2 with small v, that would be the momentum gained, that which would be gained to weak approximation to match Newtonian with non-relativistic speed.
Okay, so here's my first question. If this is the momentum gained for small v after one jump, and if the ship observers say this is the amount of momentum that has been applied to get them at that speed, then wouldn't they say n times that momentum has been applied after n jumps? I understand this applied momentum might be considered different from classical or even relativistic momentum, but it is just that amount that has been "applied". Is there a better term for this in physics?
In this manner of thinking about it, if (m c / 2) ln[(1 + v/c) / (1 - v/c)] is the momentum gained after one jump to small v, then (m c / 2) ln[(1 + v/c) / (1 - v/c)] n would be the "applied" momentum after n jumps. But this is then just equal to ( m c / 2) ln[(1 + v_n/c) / (1 - v_n/c)] for any n according to the above relation, so applies to all speeds, large or small.
Sorry to ramble on but this relation keeps popping up in my work and I'm wondering how I should think about it, how it fits into Relativity in a sensible way. A while back I found the identical relation using collisions of elastic bodies, which I then started a thread about but it was promptly removed because I had determined what I claimed to be new laws of conservation of momentum and energy based upon the results, mistakenly stating that Relativity did not uphold these laws, not realizing until asking about it afterward that Relativity maintains the laws using relativistic momentum and energy by heating up bodies when they collide, adding mass, until they lose the heat and regain their original masses.
The reason I mention this last bit about the conservation of energy of momentum and energy is because I also have questions about that which relate to what I have been working on as well. I thought about going back to the other thread I was asking about it, but here is just as well, where also a better idea can be gained about precisely what I am driving at. For instance, when the ship is constantly accelerating, why doesn't it heat up and gain mass in the same way as with collisions? I mean, the same relation for "applied" momentum is found in both cases, albeit without assuming mass gain or heat loss in deriving them. Secondly, if there is heat loss in collisions, why does Relativity include it beforehand in the original set of laws of conservation? That is, shouldn't heat gain or loss be considered after the fact, whereas the original laws assume no loss for the ideal situation, and heat loss would then subtract from the final kinetic energies of the bodies, as we would for classical, for instance? Finally, shouldn't the amount of heat gain or loss be determined by the nature of the interaction rather than according to the original laws of conservation under ideal conditions?
Again, just to be clear and safe, I am not claiming this to be the true form of relativistic momentum, at least not in this forum, but I am only asking questions about what I am referring to as "applied" momentum, perhaps similar to that of "effective" speed, v / sqrt(1 - (v/c)^2) in some respects. This is the best forum of Relativity experts and I would like to know more about what this is I keep running across. To demonstrate that this relation holds up, at least without considering mass or heat gain in the original example of a ship making n jumps, since the momentum gained is also equal to the proper acceleration applied times the proper time, p = m dv = a dt, jumping in infinitesimal intervals, proper in each case since it is the ship observers that measure this applied momentum, we gain,
[(1 + dv/c) / (1 - dv/c)]^n = [(1 + v_n/c) / (1 - v_n/c)], where n = t_n / dt
[(1 + dv/c) / (1 - dv/c)]^[(a t_n) / (a dt)] = [(1 + v_n/c) / (1 - v_n/c)]
[(1 + dv/c) / (1 - dv/c)]^[k1 / (a dt)] = [(1 + v_n/c) / (1 - v_n/c)]^(k1 / a t_n) = k2
where k1 and k2 are constants, k2 constant because the left side of the equation is constant for some value k2 after one jump and the right side equal to that value after any number of jumps n.
ln[(1 + v_n/c) / (1 - v_n/c)] (k1 / a t_n) = ln(k2)
ln[(1 + v_n/c) / (1 - v_n/c)] (k1 / a t_n) = ln(k2), k3 {constant} = ln(k2) / k1
ln[(1 + v_n/c) / (1 - v_n/c)] = k3 a t_n
Where for small v_n, the left side of the equation becomes 2 v_n/c and a t_n = v_n, so k3 = 2 / c.
ln[(1 + v_n/c) / (1 - v_n/c)] = 2 a t_n / c
t_n = (c / (2 a)) ln[(1 + v_n/c) / (1 - v_n/c)]
This is the equation for the proper time that has passed according to the ship observers' clock with proper acceleration a after gaining a relative speed to the rest frame of v_n. To put it in its more familiar form without v_n and using the time of acceleration t according to the rest frame, we have
v_n/c = (a t / c) / sqrt[1 + (a t / c)^2]
t_n = (c / (2 a)) ln[(1 + (a t / c) / sqrt[1 + (a t / c)^2]) / (1 - (a t / c) / sqrt[1 + (a t / c)^2])]
= (c / (2 a)) ln[(sqrt[1 + (a t / c)^2] + a t / c) / (sqrt[1 + (a t / c)^2] - a t / c)]
= (c / (2 a)) ln[(sqrt[1 + (a t / c)^2] + a t / c)^2 / ((1 + (a t / c)^2) - (a t / c)^2)]
= (c / (2 a)) ln[(sqrt[1 + (a t / c)^2] + a t / c)^2]
= (c / (2 a)) (2 ln[sqrt[1 + (a t / c)^2] + a t / c])
= (c / a) ln[a t / c + sqrt[1 + (a t / c)^2]]
It appears this relation for applied momentum can be legitimately applied to a constantly accelerating ship as well as a ship accelerating in jumps. But this is under ideal conditions, not considering heat and mass gain. So again, why would we use relativistic momentum for collisions but not for constant acceleration? Why wouldn't the ship heat up and gain mass also? Why doesn't the heat and mass gain in collisions depend upon the type of interaction? Why are each described by such different equations when essentially the same process is taking place to accelerate the ship as with collisions of bodies? Why don't the laws of conservation and energy apply in the same manner to the constantly accelerating ship, with heat and mass gain?