MHB Apply the divergence theorem to calculate the flux of the vector field

Click For Summary
The discussion centers on applying the divergence theorem to calculate the flux of the vector field F = (yx - x)i + 2xyzj + yk through a cube defined by the planes x = ±1, y = ±1, z = ±1. The user presents their calculation steps, which involve computing the divergence of F and integrating over the volume of the cube. The final result of the flux calculation is confirmed to be -8. The response indicates that the user's approach and calculations are correct. This confirms the application of the divergence theorem in this context.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I have the following exercise:
Apply the divergence theorem to calculate the flux of the vector field $\overrightarrow{F}=(yx-x)\hat{i}+2xyz\hat{j}+y\hat{k}$ at the cube that is bounded by the planes $x= \pm 1, y= \pm 1, z= \pm 1$.

I have done the following...Could you tell me if this is correct?

Flux=$\iint_S{\overrightarrow{F} \cdot \hat{n}} d \sigma=\iiint_D{\nabla \cdot \overrightarrow{F}}dV=\int_{-1}^1 \int_{-1}^1 \int_{-1}^1 {(y-1+2xz)}dxdydz=\int_{-1}^1 \int_{-1}^1{(2y-2)}dydz=\int_{-1}^1{-4}dz=-8$
 
Physics news on Phys.org
mathmari said:
Hey! :o

I have the following exercise:
Apply the divergence theorem to calculate the flux of the vector field $\overrightarrow{F}=(yx-x)\hat{i}+2xyz\hat{j}+y\hat{k}$ at the cube that is bounded by the planes $x= \pm 1, y= \pm 1, z= \pm 1$.

I have done the following...Could you tell me if this is correct?

Flux=$\iint_S{\overrightarrow{F} \cdot \hat{n}} d \sigma=\iiint_D{\nabla \cdot \overrightarrow{F}}dV=\int_{-1}^1 \int_{-1}^1 \int_{-1}^1 {(y-1+2xz)}dxdydz=\int_{-1}^1 \int_{-1}^1{(2y-2)}dydz=\int_{-1}^1{-4}dz=-8$

Yep. Correct. :cool:
 
I like Serena said:
Yep. Correct. :cool:

Great! Thanks a lot! :o