MHB Apply the divergence theorem to calculate the flux of the vector field

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I have the following exercise:
Apply the divergence theorem to calculate the flux of the vector field $\overrightarrow{F}=(yx-x)\hat{i}+2xyz\hat{j}+y\hat{k}$ at the cube that is bounded by the planes $x= \pm 1, y= \pm 1, z= \pm 1$.

I have done the following...Could you tell me if this is correct?

Flux=$\iint_S{\overrightarrow{F} \cdot \hat{n}} d \sigma=\iiint_D{\nabla \cdot \overrightarrow{F}}dV=\int_{-1}^1 \int_{-1}^1 \int_{-1}^1 {(y-1+2xz)}dxdydz=\int_{-1}^1 \int_{-1}^1{(2y-2)}dydz=\int_{-1}^1{-4}dz=-8$
 
Physics news on Phys.org
mathmari said:
Hey! :o

I have the following exercise:
Apply the divergence theorem to calculate the flux of the vector field $\overrightarrow{F}=(yx-x)\hat{i}+2xyz\hat{j}+y\hat{k}$ at the cube that is bounded by the planes $x= \pm 1, y= \pm 1, z= \pm 1$.

I have done the following...Could you tell me if this is correct?

Flux=$\iint_S{\overrightarrow{F} \cdot \hat{n}} d \sigma=\iiint_D{\nabla \cdot \overrightarrow{F}}dV=\int_{-1}^1 \int_{-1}^1 \int_{-1}^1 {(y-1+2xz)}dxdydz=\int_{-1}^1 \int_{-1}^1{(2y-2)}dydz=\int_{-1}^1{-4}dz=-8$

Yep. Correct. :cool:
 
I like Serena said:
Yep. Correct. :cool:

Great! Thanks a lot! :o
 
Back
Top