Apply the Legendre Transformation to the Entropy S as a function of E

GravityX
Messages
19
Reaction score
1
Homework Statement
Apply Legendre Transformation to Entropy
Relevant Equations
##g(m)=f(x(m))-m*x(m)## and ##x(m)=(f')^-1(m)##
Hi,

Unfortunately I am not getting anywhere with task three, I don't know exactly what to show

Bildschirmfoto 2022-11-28 um 16.30.54.png

Shall I now show that from ##S(T,V,N)## using Legendre I then get ##S(E,V,N)## and thus obtain the Sackur-Tetrode equation?
 
Physics news on Phys.org
You should rather think in terms of differentials. The "natural independent parameters" for ##S## are ##(E,V,N)##. Now you want to get another potential with the "natural independent parameters" ##(T,V,N)##. So first write down the differential ##\mathrm{d} S## in terms of ##(E,V,N)## and then think about, how to Legendre transform to a new potential with the other set of independent parameters.
 
Thanks vanhees71 for your help 👍

I have now represented ##ds## as follows

$$ds=\frac{\partial S}{\partial E}dE+\frac{\partial S}{\partial V}dV+\frac{\partial S}{\partial N}dN$$

$$ds=\frac{1}{T}dE+\frac{P}{T}dV-\frac{\mu }{T}dN$$

Now I would just have to get rid of the ##dE## or rather I would have to express ##dE## with the help of ##dT##, ##dV##, ##dN##, right?
 
Write it in the form of ##\mathrm{d} E=...## then find a new potential, ##F## ("free energy"), such that instead of a differnetial with ##\mathrm{d} s##, ##\mathrm{d} V## and ##\mathrm{d}N## you get one with ##\mathrm{d} T##, ##\mathrm{d}V## and ##\mathrm{d}V##. Note that
$$\mathrm{d}(Ts)=s \mathrm{d} T + T \mathrm{d} s!$$
 
Thanks for your help vanhees71 👍 I think I got it now 😀
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top