Applying Osborn's Rule to Odd/Even Products of Hyperbolic Sines

  • Thread starter Thread starter PFuser1232
  • Start date Start date
  • Tags Tags
    Hyperbolic
AI Thread Summary
Osborn's rule allows for the conversion of trigonometric identities to hyperbolic identities by substituting hyperbolic functions and flipping the sign of terms involving the product of two hyperbolic sines. The discussion highlights the application of this rule to odd/even products of hyperbolic sines, specifically questioning the transformations of expressions like sin^4{x} and sin^3{x}. The reasoning behind Osborn's rule is emphasized over mere memorization, with the Euler identity serving as a foundational tool for relating trigonometric and hyperbolic functions. The transformations yield results such as sin^4{ix} equating to sinh^4{x} and sin^3{ix} to -i sinh^3{x}. Ultimately, understanding the underlying logic is crucial for effectively applying Osborn's rule to various identities.
PFuser1232
Messages
479
Reaction score
20
Osborn's rule:
"The prescription that a trigonometric identity can be converted to an analogous identity for hyperbolic functions by expanding, exchanging trigonometric functions with their hyperbolic counterparts, and then flipping the sign of each term involving the product of two hyperbolic sines."
I understand how to apply Osborn's rule to identities involving a product of two hyperbolic sines, but I'm not entirely sure what happens when there is an "odd/even product" of hyperbolic sines. For instance, does ##\sin^4{x}## become ##-\sinh^4{x}##? What about ##\sin^3{x}##?
 
Mathematics news on Phys.org
It's more important to understand the reasoning behind Osborn's rule rather than memorize the rule itself. What you should memorize is the Euler identity

$$e^{ix} = \cos x + i \sin x.$$

By taking the complex conjugate, we can solve for

$$ \cos x = \frac{e^{ix} + e^{-ix} }{2},~~~\sin x = \frac{e^{ix} - e^{-ix}}{2i}.$$

These provide a way to relate the trig functions to the hyperbolic ones and we find that

$$ \cos ix = \cosh x,~~~ \sin i x = i \sinh x. ~~(*)$$

Given these relations we can compute

$$ \sin^4 ix = \sinh^4 x,~~~\sin^3 ix = -i \sinh^3 x.$$

Osborne's rule, whatever the particular statement should be, is what follows from applying the relations (*) to the various trig identities. Whether it is better for you to memorize the rule, or remember the above logic and quickly derive the hyperbolic identities from the trig identities is something you should decide for yourself after some exercise in converting identities.
 
  • Like
Likes PFuser1232
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top