Re: applying the central limit theorem
Given n r.v. $X_{1}, X_{2},..., X_{n}$ with the same distribution, mean $\mu$ and variance $\sigma^{2}$, then for n 'large enough' the r.v. $S = X_{1} + X_{2} + ... + X_{n}$ is normal distributed with mean $\mu_{S} = n\ \mu$ and variance $\sigma^{2}_{S} = n\ \sigma^{2}$. In this case is...
$\displaystyle \mu= \alpha\ \theta = \frac {1}{2} \implies \mu_{S} = 40\ \mu = 20$
$\displaystyle \sigma^{2}= \alpha\ \theta^{2} = \frac{1}{20} \implies \sigma^{2}_{S}= 40\ \sigma^{2} = 2$
The probability that S is greater than x days is...
$\displaystyle P\{S > x\} = \frac{1}{2}\ \text{erfc}\ (\frac{x - \mu_{S}}{\sigma_{S}\ \sqrt{2}})\ (1)$
... and for x = 2191.5 we have...
$\displaystyle P\{S > x\} = \frac{1}{2}\ \text{erfc}\ (1085.75)\ (2)$
Of course the quantity (2) is numerically unvaluable and an approximate value is given in...
http://www.mathhelpboards.com/f52/unsolved-statistic-questions-other-sites-part-ii-1566/index4.html#post12076
In any case is a number 'very small'... exceeding our imagination (Wasntme)...Kind regards $\chi$ $\sigma$