Approximate Ratio: Steps to Find Reasonable Solutions

onako
Messages
86
Reaction score
0
The following is an approximation problem. Given a ratio:
D =\frac{ \sum a_ib_i}{\sum b_ib_i}

I wonder what steps to follow to give a reasonable approximation.
This is an intuition
D =\frac{ \sum a_i}{\sum b_i}.
Clearly, given that all b_i terms are the same, the approximation is the correct solution.
But, this is not the case. The question is, under which conditions (assumptions on a_i or b_i) is the
above approximation accurate.
I guess, the lower the standard deviation of the b_i's, the more accurate the approximation. But, suppose the
b_i's are [1,2,3,4,5,6,7...]. What condition needs be meet for the accurate approximation.
In a sense, the ratio I'm trying to approximate is the weighted average, and in the approximation I'm discarding
the weights. If this interpretation makes it easier to further interpret, please use it.

Also, as for the conditions, I thought of
a_i>a_k, => b_i>b_k
How is this condition affecting the accuracy of the ratio approximation. Is the approximation more accurate with
this assumption.
Thanks
(topic in Number theory and Calculus subforum)
 
Physics news on Phys.org
There is no reasonable way to compare the two quantities, other than all ##b_i## are almost equal.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top