Are Bianchi IX Models Truly Homogeneous Yet Not Isotropic?

befj0001
Messages
43
Reaction score
0
In a Bianchi IX universe the metric must be invariant under the SO(3) group acting on the 3-sphere. Hence, the metric must be translation invariant in the spatial parts, where t=constant. This implies that the metric must take the form such that:

ds^2 = dt^2 - g_ij(t)(x^i)(x^j), where g is a function of t alone. Am I right about all this?

What concerns me is that someone told me that the metric:

ds^2 = -dt^2 + a^2(t)(dx)^2 + b^2(t)(dy)^2 + (b^2sin^2y+a^2cos^2y)(dz)^2 - 2a^2cosydxdz

belong to the Bianchi IX models. But this doesn't seem right?!

Am I right about the Biachi IX models being homogeneous but not necesseraly isotropic?
 
Physics news on Phys.org
befj0001 said:
What concerns me is that someone told me that the metric:

ds^2 = -dt^2 + a^2(t)(dx)^2 + b^2(t)(dy)^2 + (b^2sin^2y+a^2cos^2y)(dz)^2 - 2a^2cosydxdz

belong to the Bianchi IX models. But this doesn't seem right?!
Why don't you just write down a few of the Killing vectors and calculate their commutators?
 
Bill_K said:
Why don't you just write down a few of the Killing vectors and calculate their commutators?

Yes, the Lie algebra is isomorphic to SO(3). But what does it imply about the geometry of the universe? The spatial part being homogeneous under the action of SO(3) doesn't say anything to me!

I think like this: Since the underlying space of SO(3) is a 3-sphere, and then if the spatial part of the universe is a 3-sphere, the metric would be invariant under ordinary spatial translations just like the Minkowski space is invariant under ordinary spatial translations. But since Minkowski space is flat and noncompact, translation invariance is instead asociated by the Euclidean group of translations not SO(3). Am I on the right track?

My concern about the above metric was that I thought the x,y,z coordinates were cartesian coordiantes locally on the 3-sphere. Instead they are coordinates on the perpendicular coordinate axis witch span the entire four-manifold. Right?
 
Last edited:
Any thoughts?
 
befj0001 said:
Any thoughts?
Well the first thing that should hit you in the face about this metric is that it is independent of both x and z. Which tells you there are two obvious Killing vectors, and furthermore that they commute. So the isometry group is not SO(3)! There may be four Killing vectors, not just three.
 
Last edited:
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top