Are Even and Odd Functions Orthogonal?

theFuture
Messages
80
Reaction score
0
We were doing examples in class today and showed that sin and cos were orthogonal functions. In general, is true that even and odd functions are orthogonal? I was unsure where a proof of this might begin, mostly how to generalize the notion of an even or odd function.
 
Physics news on Phys.org
This depends on what your "inner product" is.

Let's assume it is

<f,g> = \int_{-a}^a f(x)g(x)dx

an odd function is one that satisfies f(x) = -f(-x) an even one satisfies f(x)=f(-x)

1. show that the product of an even and an odd function is odd
2. show that the integral of an odd function over any interval [-a,a] is zero.
 
Thanks. Now that I see it like that I can't believe I couldn't come up with that.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top