Relativity agrees with Newtonian predictions that regardless of whether the Sun or the Earth are chosen arbitrarily as the center of the coordinate system describing the solar system, the paths of the planets form (roughly) ellipses with respect to the Sun, not the Earth. With respect to the average
reference frame of the
fixed stars, the planets do indeed move around the Sun, which due to its much larger mass, moves far less than its own diameter and the gravity of which is dominant in determining the orbits of the planets. (In other words, the center of mass of the solar system is near the center of the Sun.) The Earth and Moon are much closer to being a
binary planet; the center of mass around which they both rotate is still inside the Earth, but is about 4,624 km (2,873 mi) or 72.6% of the Earth's radius away from the centre of the Earth (thus closer to the surface than the center).[
citation needed]
What the principle of relativity points out is that correct mathematical calculations can be made regardless of the reference frame chosen, and these will all agree with each other as to the predictions of actual motions of bodies with respect to each other. It is not necessary to choose the object in the solar system with the largest gravitational field as the center of the coordinate system in order to predict the motions of planetary bodies, though doing so may make calculations easier to perform or interpret. A
geocentric coordinate system can be more convenient when dealing only with bodies mostly influenced by the gravity of the Earth (such as
artificial satellitesand the
Moon), or when calculating what the sky will look like when viewed from Earth (as opposed to an imaginary observer looking down on the entire solar system, where a different coordinate system might be more convenient).