Are there alternative methods for proving multivariable limits?

biggins
Messages
10
Reaction score
0
For multivariable limits, the way my math books has taught me to prove they exist is to use the epsilon delta argument (for every epsilon > 0, there is a delta >0 ...). I have heard that for most cases you will almost never have to use this argument. Is this true? I know you can use the squeeze theorem on some cases but what about the others?

-hamilton
https://www.physicsforums.com/images/smilies/surprised.gif
 
Last edited by a moderator:
Mathematics news on Phys.org
I doubt that your books taught you that as "the" way to prove limits exist. That is, of course, the definition and so is always introduced first. But all of the "properties" of limits that are true for single variable limits are true for multivariable limits. For example, if your function f(x,y,z) is a fraction U(x,y,z)/V(x,y,z), the limit as (x,y,z) goes to (a,b,c) of U if L and the limit as (x,y,z) goes to (a,b,c) is M, not equal to 0, then the limit of f as (x,y,z) goes to (a,b,c) is L/M.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top