Foundations Are there handbooks compiling math techniques to solve problems?

AI Thread Summary
The discussion centers on the usefulness of variable transformation techniques in solving algebraic and differential equations, as well as the application of infinite series to determine coefficients for potential solutions. There is an inquiry about whether there are comprehensive compilations of these mathematical techniques in book form, particularly by mathematics historians. The conversation references the post-WWI initiative in France led by mathematicians under the pseudonym N. Bourbaki, which aimed to document mathematical knowledge in a structured manner. Additionally, several resources are suggested for those seeking practical mathematical techniques, including the Schaum's Outlines series, various mathematical physics handbooks, and the Princeton Companions to Mathematics and Applied Mathematics. These resources provide a range of applied math problems, solutions, and lightweight treatments of mathematical topics.
jonjacson
Messages
450
Reaction score
38
Let me explain what I mean.

When you try to solve an algebraic equation, or even sometimes a differential equation it is useful to change variables so the new form of the equation is easier to solve, or takes the form of an equation that has already been solved.

Another technique is making your equation equal to a possible solution in the form of an infinite series and computing what are the coefficients.

There are many of these techniques that we all know, but my question is if there is anybody compiling them into a book format. What about mathematics historians? Do the compile them?

Thanks for your time.
 
Physics news on Phys.org
Following WW1, there was a program in France to run seminars and to create a set of volumes authored under the pseudonym N. Bourbaki called the Elements of Mathematics that collectively brought together the best mathematicians of the era to share and record their knowledge.

https://en.wikipedia.org/wiki/Nicolas_Bourbaki

https://en.wikipedia.org/wiki/Séminaire_Nicolas_BourbakiThe best popular collection of Mathematical recipes would be the Schaum's Outlines series which covers a lot of applied math with problems and solutions.
 
  • Like
  • Informative
Likes etotheipi, berkeman and hutchphd
There are several other practical Math Handbooks to consider:

- Arfken and Weber Mathematical Physics https://www.amazon.com/dp/9381269556/?tag=pfamazon01-20

- Boaz Mathematical Physics https://www.amazon.com/dp/0471198269/?tag=pfamazon01-20

- Nearing Mathematical Tools for Physics https://www.amazon.com/dp/048648212X/?tag=pfamazon01-20

which is also available from the author's website online at http://www.physics.miami.edu/~nearing/mathmethods/

- Princeton Companion to Mathematics https://www.amazon.com/dp/B005N8WNT0/?tag=pfamazon01-20

- Princeton Companion to Applied Mathematics https://www.amazon.com/dp/B013ET08FA/?tag=pfamazon01-20

- Handbook of Mathematics authored by
  • I.N. Bronshtein
  • K.A. Semendyayev
  • Gerhard Musiol
  • Heiner Mühlig
https://link.springer.com/book/10.1007/978-3-662-46221-8

and my favorites:
- Math 1001 by Elwes light-weight short descriptions of various math topics that you can later investigate online
- Mathematical Bible by Beveridge light-weight treatment of various math topics and history
 
For the following four books, has anyone used them in a course or for self study? Compiler Construction Principles and Practice 1st Edition by Kenneth C Louden Programming Languages Principles and Practices 3rd Edition by Kenneth C Louden, and Kenneth A Lambert Programming Languages 2nd Edition by Allen B Tucker, Robert E Noonan Concepts of Programming Languages 9th Edition by Robert W Sebesta If yes to either, can you share your opinions about your personal experience using them. I...
Hi, I have notice that Ashcroft, Mermin and Wei worked at a revised edition of the original solid state physics book (here). The book, however, seems to be never available. I have also read that the reason is related to some disputes related to copyright. Do you have any further information about it? Did you have the opportunity to get your hands on this revised edition? I am really curious about it, also considering that I am planning to buy the book in the near future... Thanks!
I’ve heard that in some countries (for example, Argentina), the curriculum is structured differently from the typical American program. In the U.S., students usually take a general physics course first, then move on to a textbook like Griffiths, and only encounter Jackson at the graduate level. In contrast, in those countries students go through a general physics course (such as Resnick-Halliday) and then proceed directly to Jackson. If the slower, more gradual approach is considered...
Back
Top