Azael
- 257
- 1
First of all if you read this and the latex is all messed upp I am probably working on getting it right so please be patient till I get it right. No need to post a comment that it doesn't work. Thanks
I haven't taken a pure maths class in over 2,5 years so I can hardly remember how to write proofs
Problem 1.
Let C \in \mathbb{R} be a arbitrary number. Show that the function
f:[a,b]\rightarrow \mathbb{R}
given by f(t)=cos(ct)
is of bounded variation. i.e it satisifies the condition
Sup V_f (t) < \infty
Proof.
V_f (t) = \lim_{n\rightarrow \infty} Sup_{ t_k^n,t_{k-1}^n \in \pi_n } <br /> \sum_{k=1}^n |{(f(t_k^n)-f(t_{k-1}^n)}|
with \pi_n : t_0^n < ... < t_n^n
Since Cos(ct)
is differentiable we can rewrite V_f (t) with the mean value theorem
V_f (t) = \lim_{n\rightarrow \infty} Sup_{ t_k^n,t_{k-1}^n \in \pi_n } <br /> \sum_{k=1}^n \|{(f(t_k^n)-f(t_{k-1}^n)}| = \lim_{n\rightarrow \infty} Sup_{ t_k^n,t_{k-1}^n \in \pi_n } \sum_{k=1}^n |f^{'} (G)| (t_k^n - t_{k-1}^n)
wich is equal to(according to the definition of the riemann integral)
\int_{a}^{b} |f^{'} (x)| dx
with f(x)=f(t)=cos(ct) we get
\int_{a}^{b} |-csin(ct)| dx \leq \int_{a}^{b} |c| dx = |c|(b-a)
So
Sup V_f (t) = Sup |c|(b-a) <\infty

I haven't taken a pure maths class in over 2,5 years so I can hardly remember how to write proofs
Problem 1.
Let C \in \mathbb{R} be a arbitrary number. Show that the function
f:[a,b]\rightarrow \mathbb{R}
given by f(t)=cos(ct)
is of bounded variation. i.e it satisifies the condition
Sup V_f (t) < \infty
Proof.
V_f (t) = \lim_{n\rightarrow \infty} Sup_{ t_k^n,t_{k-1}^n \in \pi_n } <br /> \sum_{k=1}^n |{(f(t_k^n)-f(t_{k-1}^n)}|
with \pi_n : t_0^n < ... < t_n^n
Since Cos(ct)
is differentiable we can rewrite V_f (t) with the mean value theorem
V_f (t) = \lim_{n\rightarrow \infty} Sup_{ t_k^n,t_{k-1}^n \in \pi_n } <br /> \sum_{k=1}^n \|{(f(t_k^n)-f(t_{k-1}^n)}| = \lim_{n\rightarrow \infty} Sup_{ t_k^n,t_{k-1}^n \in \pi_n } \sum_{k=1}^n |f^{'} (G)| (t_k^n - t_{k-1}^n)
wich is equal to(according to the definition of the riemann integral)
\int_{a}^{b} |f^{'} (x)| dx
with f(x)=f(t)=cos(ct) we get
\int_{a}^{b} |-csin(ct)| dx \leq \int_{a}^{b} |c| dx = |c|(b-a)
So
Sup V_f (t) = Sup |c|(b-a) <\infty
Last edited: