Area Between Curves: Find the Region Between y=sqrt(x) & y=1/2x

  • Thread starter Thread starter 3.141592654
  • Start date Start date
  • Tags Tags
    Area Curves
3.141592654
Messages
85
Reaction score
0

Homework Statement



Find the area of the region between the two curves.

y=\sqrt{x}

y=\frac{1}{2}x

x=9

Homework Equations





The Attempt at a Solution



The domain of the region is [4,9]:

\int\frac{1}{2}x-\sqrt{x}dx with limits of integration [4, 9]

=\frac{1}{2}\intxdx-\int x^\frac{1}{2}dx

=\frac{1}{2}\frac{x^2}{2}-\frac{2}{3}x^\frac{3}{2}

=\frac{1}{4}(9^2-4^2)-\frac{2}{3}(9^\frac{3}{2}-4^\frac{3}{2})

=\frac{1}{4}(65)-\frac{2}{3}(27-8)

=\frac{1}{4}(65)-\frac{2}{3}(19)

=\frac{65}{4}-\frac{38}{3}

=\frac{195-152}{12}

=\frac{43}{12}

The answer in the book is \frac{59}{12}.
 
Physics news on Phys.org
It looks to me like there are two parts to the region lying between the two curves. What about the [0,4] part? Shouldn't you add the areas of both of them?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top