Area in shades region (Matlab)

  • Thread starter Thread starter gfd43tg
  • Start date Start date
  • Tags Tags
    Area Matlab
gfd43tg
Gold Member
Messages
947
Reaction score
48
ImageUploadedByPhysics Forums1407795886.518929.jpg

This is a part MATLAB and part math question. I know for the shaded region, I would usually do
##A_{shaded} = \int_{inter(2)}^{inter(3)} f_{1}(x) \mathrm{d}x - \int_{inter(2)}^{inter(3)} f_{2}(x) \mathrm{d}x##

However, since it appears they want the function handle to be just one line, am I allowed to do

Code:
fh = @(x) -0.1*x.^3 - 0.5*x.^2 - 2.2*x + 9

Since I can't make two integrals and just subtract them?

In other words, would it be correct to say
##A_{shaded} = \int_{inter(2)}^{inter(3)} (f_{1}(x)-f_{2}(x)) \mathrm{d}x##?
 
Last edited:
Physics news on Phys.org
Yes, of course, that's correct. One of the first things you should learn about integrals is that they are "linear": \int_a^b (\alpha f+ \beta g) dx= \alpha\int_a^b f dx+ \beta \int_a^b g dx
 
Last edited by a moderator:
  • Like
Likes 1 person
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top